Most Transformation Semigroups Are Free
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 464-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: transformation semigroup, free semigroup, endomorphism of a tree, continuous semigroup, complete metric space, Baire category theorem.
@article{MZM_2010_87_3_a15,
     author = {V. V. Doroshenko},
     title = {Most {Transformation} {Semigroups} {Are} {Free}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {464--467},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a15/}
}
TY  - JOUR
AU  - V. V. Doroshenko
TI  - Most Transformation Semigroups Are Free
JO  - Matematičeskie zametki
PY  - 2010
SP  - 464
EP  - 467
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a15/
LA  - ru
ID  - MZM_2010_87_3_a15
ER  - 
%0 Journal Article
%A V. V. Doroshenko
%T Most Transformation Semigroups Are Free
%J Matematičeskie zametki
%D 2010
%P 464-467
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a15/
%G ru
%F MZM_2010_87_3_a15
V. V. Doroshenko. Most Transformation Semigroups Are Free. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 464-467. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a15/

[1] J. D. Dixon, Bull. London Math. Soc., 22:3 (1990), 222–226 | DOI | MR | Zbl

[2] A. S. Oliinyk, Matem. zametki, 63:2 (1998), 248–259 | MR | Zbl

[3] W. Hołubowski, Semigroup Forum, 66:2 (2003), 231–235 | DOI | MR | Zbl

[4] R. A. Aleksandryan, E. A. Mirzakhanyan, Obschaya topologiya, Vysshaya shkola, M., 1979 | Zbl