Fourier–Haar Coefficients and Properties of Continuous Functions
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 443-452
Cet article a éte moissonné depuis la source Math-Net.Ru
It is well known that if the Fourier–Haar coefficients have a certain order or if a certain series composed of the Fourier–Haar coefficients of a function $f(x)\in C(0,1)$ converges, then the function has a certain form. In the present paper, we prove that not only the Fourier–Haar coefficients, but also the difference of these coefficients possess these properties.
Keywords:
orthonormal Haar system, continuous function, binary irrational point.
Mots-clés : Fourier–Haar coefficient, Abel transformation
Mots-clés : Fourier–Haar coefficient, Abel transformation
@article{MZM_2010_87_3_a11,
author = {V. Tsagareishvili},
title = {Fourier{\textendash}Haar {Coefficients} and {Properties} of {Continuous} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {443--452},
year = {2010},
volume = {87},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a11/}
}
V. Tsagareishvili. Fourier–Haar Coefficients and Properties of Continuous Functions. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 443-452. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a11/
[1] G. Aleksich, Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963 | MR | Zbl
[2] V. Sh. Tsagareishvili, “O variatsii koeffitsientov Fure–Khaara”, Matem. sb., 195:3 (2004), 143–160 | MR | Zbl
[3] V. Sh. Tsagareishvili, “O koeffitsientakh Fure nepreryvnoi funktsii po sisteme Khaara”, Soobsch. AN GSSR, 63:1 (1971), 37–39 | MR | Zbl
[4] S. V. Bochkarev, “O koeffitsientakh ryadov Fure po sisteme Khaara”, Matem. sb., 80:1 (1969), 97–116 | MR | Zbl