Fourier--Haar Coefficients and Properties of Continuous Functions
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 443-452

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that if the Fourier–Haar coefficients have a certain order or if a certain series composed of the Fourier–Haar coefficients of a function $f(x)\in C(0,1)$ converges, then the function has a certain form. In the present paper, we prove that not only the Fourier–Haar coefficients, but also the difference of these coefficients possess these properties.
Keywords: orthonormal Haar system, continuous function, binary irrational point.
Mots-clés : Fourier–Haar coefficient, Abel transformation
@article{MZM_2010_87_3_a11,
     author = {V. Tsagareishvili},
     title = {Fourier--Haar {Coefficients} and {Properties} of {Continuous} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {443--452},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a11/}
}
TY  - JOUR
AU  - V. Tsagareishvili
TI  - Fourier--Haar Coefficients and Properties of Continuous Functions
JO  - Matematičeskie zametki
PY  - 2010
SP  - 443
EP  - 452
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a11/
LA  - ru
ID  - MZM_2010_87_3_a11
ER  - 
%0 Journal Article
%A V. Tsagareishvili
%T Fourier--Haar Coefficients and Properties of Continuous Functions
%J Matematičeskie zametki
%D 2010
%P 443-452
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a11/
%G ru
%F MZM_2010_87_3_a11
V. Tsagareishvili. Fourier--Haar Coefficients and Properties of Continuous Functions. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 443-452. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a11/