Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 267-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

Six classes of Riemann–Cartan manifolds are distinguished in an invariant way. Geometric characteristics of some of the distinguished classes of Riemann–Cartan manifolds are found, and also conditions hindering the existence, are determined. The local geometry of Riemann–Cartan manifolds carrying pseudo-Killing and pseudoharmonic vector fields is studied. Conditions hindering the existence “in the large” of pseudo-Killing and pseudoharmonic vector fields on Riemann–Cartan manifolds are obtained.
Keywords: Riemann–Cartan manifold, pseudo-Killing vector field, pseudoharmonic vector field, umbilical manifold, Ricci tensor
Mots-clés : adjoint connection.
@article{MZM_2010_87_2_a8,
     author = {S. E. Stepanov and I. A. Gordeeva},
     title = {Pseudo-Killing and {Pseudoharmonic} {Vector} {Fields} on a {Riemann--Cartan} {Manifold}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {267--279},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. A. Gordeeva
TI  - Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold
JO  - Matematičeskie zametki
PY  - 2010
SP  - 267
EP  - 279
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/
LA  - ru
ID  - MZM_2010_87_2_a8
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. A. Gordeeva
%T Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold
%J Matematičeskie zametki
%D 2010
%P 267-279
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/
%G ru
%F MZM_2010_87_2_a8
S. E. Stepanov; I. A. Gordeeva. Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 267-279. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/

[1] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (premiére partie)”, Ann. Sci. École Norm. Sup. (3), 40 (1923), 325–412 | MR | Zbl

[2] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (premiére partie) (suite)”, Ann. Sci. École Norm. Sup. (3), 41 (1924), 1–25 | MR | Zbl

[3] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (deuxiéme partie)”, Ann. Sci. École Norm. Sup. (3), 42 (1925), 17–88 | MR | Zbl

[4] R. Penrose, “Spinors and torsion in general relativity”, Found. Phys., 13:3 (1983), 325–339 | DOI | MR

[5] A. Trautman, “The Einstein–Cartan theory”, Encyclopedia of Mathematical Physics, Vol. 2, Elsevier, Oxford, 2006, 189–195 ; arXiv: gr-qc/0606062 | MR | Zbl

[6] D. Puetzfeld, “Prospects of non-Riemannian cosmology”, Proceedings of 22nd Texas Symposium on Relativistic Astrophysics at Stanford University (December 13–17, 2004), Stanford Univ. Press, California, 2004, Paper No 1221, 5 pp.; arXiv: astro-ph/0501231

[7] R. T. Hammond, “Torsion gravity”, Rep. Progr. Phys., 65:5 (2002), 599–649 | DOI | MR

[8] K. Yano, “On semi-symmetric metric connection”, Rev. Roumaine Math. Pures Appl., 15 (1970), 1579–1586 | MR | Zbl

[9] Z. Nakao, “Submanifolds of a Riemannian manifold semisymmetric metric connections”, Proc. Amer. Math. Soc., 54:1 (1976), 261–266 | DOI | MR | Zbl

[10] B. Barua, A. K. Ray, “Some properties of semisymmetric metric connection in a Riemannian manifold”, Indian J. Pure Appl. Math., 16:7 (1985), 736–740 | MR | Zbl

[11] J. Sengupta, U. C. De, T. Q. Binh, “On a type of semi-symmetric non-metric connection on a Riemannian manifold”, Indian J. Pure Appl. Math., 31:12 (2000), 1659–1670 | MR | Zbl

[12] G. Muniraja, “Manifolds admitting a semi-symmetric metric connection and a generalization of Schur's theorem”, Int. J. Contemp. Math. Sci., 3 (2008), 1223–1232 | Zbl

[13] S. Bochner, K. Yano, “Tensor-fields in non-symmetric connections”, Ann. of Math. (2), 56:3 (1952), 504–519 | DOI | MR | Zbl

[14] K. Yano, C. Bokhner, Krivizna i chisla Betti, IL, M., 1957 | MR | Zbl

[15] S. I. Goldberg, “On pseudo-harmonic and pseudo-Killing vectors in metric manifolds with torsion”, Ann. of Math. (2), 64:2 (1956), 364–373 | DOI | MR | Zbl

[16] Y. Kubo, “Vector fields in a metric manifold with torsion and boundary”, Kōdai Math. Sem. Rep., 24:4 (1972), 383–395 | DOI | MR | Zbl

[17] J. A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications, Grundlehren Math. Wiss., 10, Springer-Verlag, Berlin, 1954 | MR | Zbl

[18] S. E. Stepanov, “Ob odnom analiticheskom metode obschei teorii otnositelnosti”, TMF, 122:3 (2000), 482–496 | MR | Zbl

[19] I. A. Gordeeva, “O klassifikatsii nesimmetricheskikh metricheskikh svyaznostei”, Sbornik trudov Mezhdunarodnogo geometricheskogo seminara im. G. F. Lapteva, PGPU, Penza, 2006, 30–37

[20] I. A. Gordeeva, “Psevdokillingovye vektornye polya na mnogoobraziyakh Rimana–Kartana”, Tezisy dokladov Mezhdunarodnoi konferentsii “Geometriya v Odesse – 2008” (Odessa, 19–24 maya 2008 g.), Fond «Nauka», Odessa, 2008, 73–75

[21] I. A. Gordeeva, S. E. Stepanov, “Teorema ischeznoveniya dlya psevdogarmonicheskikh vektornykh polei na mnogoobrazii Rimana–Kartana”, Tezisy dokladov Mezhdunarodnoi konferentsii po differentsialnym uravneniyam i dinamicheskim sistemam (Suzdal, 27 iyunya–2 iyulya 2008 g.), VlGU, Vladimir, 2008, 71–73

[22] Chetyrekhmernaya rimanova geometriya. Seminar Artura Besse, ed. A. Besse, Mir, M., 1985 | MR | Zbl

[23] S. E. Stepanov, “On conformal Killing 2-form of the electromagnetic field”, J. Geom. Phys., 33:3–4 (2000), 191–209 | DOI | MR | Zbl

[24] A. P. Norden, Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR | Zbl

[25] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981 | MR | Zbl

[26] V. F. Kirichenko, “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh struktur”, Itogi nauki i tekhn. Ser. Probl. geom., 18, VINITI, M., 1986, 25–71 | MR | Zbl

[27] A. Gray, L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123:1 (1980), 35–58 | DOI | MR | Zbl

[28] L. Friedland, Ch.-Ch. Hsiung, “A certain class of almost Hermitian manifolds”, Tensor (N.S.), 48:3 (1989), 252–263 | MR | Zbl

[29] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR | Zbl

[30] S. Tanno, “Partially conformal transformations with respect to $(m-1)$-dimensional distributions of $m$-dimensional Riemannian manifolds”, Tôhoku Math. J. (2), 17:4 (1965), 358–409 | DOI | MR | Zbl

[31] A. V. Dubinkin, A. P. Shirokov, “K voprosu ob infinitezimshshnykh obobschenno-konformnykh preobrazovaniyakh”, Tr. geom. sem., 15, Izd-vo Kazanskogo un-ta, Kazan, 1983, 26–34 | MR | Zbl

[32] B. L. Reinhart, Differential Geometry of Foliations. The Fundamental Integrability Problem, Ergeb. Math. Grenzgeb., 99, Springer-Verlag, Berlin, 1983 | MR | Zbl

[33] S. E. Stepanov, “An integral formula for a Riemannian almost-product manifold”, Tensor (N.S.), 55:3 (1994), 209–214 | MR | Zbl

[34] L. P. Eizenkhart, Rimanova geometriya, IL, M., 1948 | MR | Zbl