Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 267-279

Voir la notice de l'article provenant de la source Math-Net.Ru

Six classes of Riemann–Cartan manifolds are distinguished in an invariant way. Geometric characteristics of some of the distinguished classes of Riemann–Cartan manifolds are found, and also conditions hindering the existence, are determined. The local geometry of Riemann–Cartan manifolds carrying pseudo-Killing and pseudoharmonic vector fields is studied. Conditions hindering the existence “in the large” of pseudo-Killing and pseudoharmonic vector fields on Riemann–Cartan manifolds are obtained.
Keywords: Riemann–Cartan manifold, pseudo-Killing vector field, pseudoharmonic vector field, umbilical manifold, Ricci tensor
Mots-clés : adjoint connection.
@article{MZM_2010_87_2_a8,
     author = {S. E. Stepanov and I. A. Gordeeva},
     title = {Pseudo-Killing and {Pseudoharmonic} {Vector} {Fields} on a {Riemann--Cartan} {Manifold}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {267--279},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. A. Gordeeva
TI  - Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold
JO  - Matematičeskie zametki
PY  - 2010
SP  - 267
EP  - 279
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/
LA  - ru
ID  - MZM_2010_87_2_a8
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. A. Gordeeva
%T Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold
%J Matematičeskie zametki
%D 2010
%P 267-279
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/
%G ru
%F MZM_2010_87_2_a8
S. E. Stepanov; I. A. Gordeeva. Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 267-279. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/