Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_2_a8, author = {S. E. Stepanov and I. A. Gordeeva}, title = {Pseudo-Killing and {Pseudoharmonic} {Vector} {Fields} on a {Riemann--Cartan} {Manifold}}, journal = {Matemati\v{c}eskie zametki}, pages = {267--279}, publisher = {mathdoc}, volume = {87}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/} }
TY - JOUR AU - S. E. Stepanov AU - I. A. Gordeeva TI - Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold JO - Matematičeskie zametki PY - 2010 SP - 267 EP - 279 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/ LA - ru ID - MZM_2010_87_2_a8 ER -
S. E. Stepanov; I. A. Gordeeva. Pseudo-Killing and Pseudoharmonic Vector Fields on a Riemann--Cartan Manifold. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 267-279. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a8/
[1] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (premiére partie)”, Ann. Sci. École Norm. Sup. (3), 40 (1923), 325–412 | MR | Zbl
[2] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (premiére partie) (suite)”, Ann. Sci. École Norm. Sup. (3), 41 (1924), 1–25 | MR | Zbl
[3] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (deuxiéme partie)”, Ann. Sci. École Norm. Sup. (3), 42 (1925), 17–88 | MR | Zbl
[4] R. Penrose, “Spinors and torsion in general relativity”, Found. Phys., 13:3 (1983), 325–339 | DOI | MR
[5] A. Trautman, “The Einstein–Cartan theory”, Encyclopedia of Mathematical Physics, Vol. 2, Elsevier, Oxford, 2006, 189–195 ; arXiv: gr-qc/0606062 | MR | Zbl
[6] D. Puetzfeld, “Prospects of non-Riemannian cosmology”, Proceedings of 22nd Texas Symposium on Relativistic Astrophysics at Stanford University (December 13–17, 2004), Stanford Univ. Press, California, 2004, Paper No 1221, 5 pp.; arXiv: astro-ph/0501231
[7] R. T. Hammond, “Torsion gravity”, Rep. Progr. Phys., 65:5 (2002), 599–649 | DOI | MR
[8] K. Yano, “On semi-symmetric metric connection”, Rev. Roumaine Math. Pures Appl., 15 (1970), 1579–1586 | MR | Zbl
[9] Z. Nakao, “Submanifolds of a Riemannian manifold semisymmetric metric connections”, Proc. Amer. Math. Soc., 54:1 (1976), 261–266 | DOI | MR | Zbl
[10] B. Barua, A. K. Ray, “Some properties of semisymmetric metric connection in a Riemannian manifold”, Indian J. Pure Appl. Math., 16:7 (1985), 736–740 | MR | Zbl
[11] J. Sengupta, U. C. De, T. Q. Binh, “On a type of semi-symmetric non-metric connection on a Riemannian manifold”, Indian J. Pure Appl. Math., 31:12 (2000), 1659–1670 | MR | Zbl
[12] G. Muniraja, “Manifolds admitting a semi-symmetric metric connection and a generalization of Schur's theorem”, Int. J. Contemp. Math. Sci., 3 (2008), 1223–1232 | Zbl
[13] S. Bochner, K. Yano, “Tensor-fields in non-symmetric connections”, Ann. of Math. (2), 56:3 (1952), 504–519 | DOI | MR | Zbl
[14] K. Yano, C. Bokhner, Krivizna i chisla Betti, IL, M., 1957 | MR | Zbl
[15] S. I. Goldberg, “On pseudo-harmonic and pseudo-Killing vectors in metric manifolds with torsion”, Ann. of Math. (2), 64:2 (1956), 364–373 | DOI | MR | Zbl
[16] Y. Kubo, “Vector fields in a metric manifold with torsion and boundary”, Kōdai Math. Sem. Rep., 24:4 (1972), 383–395 | DOI | MR | Zbl
[17] J. A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications, Grundlehren Math. Wiss., 10, Springer-Verlag, Berlin, 1954 | MR | Zbl
[18] S. E. Stepanov, “Ob odnom analiticheskom metode obschei teorii otnositelnosti”, TMF, 122:3 (2000), 482–496 | MR | Zbl
[19] I. A. Gordeeva, “O klassifikatsii nesimmetricheskikh metricheskikh svyaznostei”, Sbornik trudov Mezhdunarodnogo geometricheskogo seminara im. G. F. Lapteva, PGPU, Penza, 2006, 30–37
[20] I. A. Gordeeva, “Psevdokillingovye vektornye polya na mnogoobraziyakh Rimana–Kartana”, Tezisy dokladov Mezhdunarodnoi konferentsii “Geometriya v Odesse – 2008” (Odessa, 19–24 maya 2008 g.), Fond «Nauka», Odessa, 2008, 73–75
[21] I. A. Gordeeva, S. E. Stepanov, “Teorema ischeznoveniya dlya psevdogarmonicheskikh vektornykh polei na mnogoobrazii Rimana–Kartana”, Tezisy dokladov Mezhdunarodnoi konferentsii po differentsialnym uravneniyam i dinamicheskim sistemam (Suzdal, 27 iyunya–2 iyulya 2008 g.), VlGU, Vladimir, 2008, 71–73
[22] Chetyrekhmernaya rimanova geometriya. Seminar Artura Besse, ed. A. Besse, Mir, M., 1985 | MR | Zbl
[23] S. E. Stepanov, “On conformal Killing 2-form of the electromagnetic field”, J. Geom. Phys., 33:3–4 (2000), 191–209 | DOI | MR | Zbl
[24] A. P. Norden, Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR | Zbl
[25] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981 | MR | Zbl
[26] V. F. Kirichenko, “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh struktur”, Itogi nauki i tekhn. Ser. Probl. geom., 18, VINITI, M., 1986, 25–71 | MR | Zbl
[27] A. Gray, L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. (4), 123:1 (1980), 35–58 | DOI | MR | Zbl
[28] L. Friedland, Ch.-Ch. Hsiung, “A certain class of almost Hermitian manifolds”, Tensor (N.S.), 48:3 (1989), 252–263 | MR | Zbl
[29] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR | Zbl
[30] S. Tanno, “Partially conformal transformations with respect to $(m-1)$-dimensional distributions of $m$-dimensional Riemannian manifolds”, Tôhoku Math. J. (2), 17:4 (1965), 358–409 | DOI | MR | Zbl
[31] A. V. Dubinkin, A. P. Shirokov, “K voprosu ob infinitezimshshnykh obobschenno-konformnykh preobrazovaniyakh”, Tr. geom. sem., 15, Izd-vo Kazanskogo un-ta, Kazan, 1983, 26–34 | MR | Zbl
[32] B. L. Reinhart, Differential Geometry of Foliations. The Fundamental Integrability Problem, Ergeb. Math. Grenzgeb., 99, Springer-Verlag, Berlin, 1983 | MR | Zbl
[33] S. E. Stepanov, “An integral formula for a Riemannian almost-product manifold”, Tensor (N.S.), 55:3 (1994), 209–214 | MR | Zbl
[34] L. P. Eizenkhart, Rimanova geometriya, IL, M., 1948 | MR | Zbl