Continuous Approximations of Goldshtik's Model
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 262-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider continuous approximations to the Goldshtik problem for separated flows in an incompressible fluid. An approximated problem is obtained from the initial problem by small perturbations of the spectral parameter (vorticity) and by approximating the discontinuous nonlinearity continuously in the phase variable. Under certain conditions, using a variational method, we prove the convergence of solutions of the approximating problems to the solution of the original problem.
Keywords: continuous approximation, nonlinear elliptic differential equation, boundary-value problem, Laplace operator, discontinuous nonlinearity, separated flow.
@article{MZM_2010_87_2_a7,
     author = {D. K. Potapov},
     title = {Continuous {Approximations} of {Goldshtik's} {Model}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {262--266},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a7/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - Continuous Approximations of Goldshtik's Model
JO  - Matematičeskie zametki
PY  - 2010
SP  - 262
EP  - 266
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a7/
LA  - ru
ID  - MZM_2010_87_2_a7
ER  - 
%0 Journal Article
%A D. K. Potapov
%T Continuous Approximations of Goldshtik's Model
%J Matematičeskie zametki
%D 2010
%P 262-266
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a7/
%G ru
%F MZM_2010_87_2_a7
D. K. Potapov. Continuous Approximations of Goldshtik's Model. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 262-266. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a7/

[1] D. K. Potapov, “Ustoichivost osnovnykh kraevykh zadach ellipticheskogo tipa so spektralnym parametrom i razryvnoi nelineinostyu v koertsitivnom sluchae”, Izv. RAEN. Ser. MMMIU, 9:1–2 (2005), 159–165

[2] V. N. Pavlenko, D. K. Potapov, “Approksimatsiya kraevykh zadach ellipticheskogo tipa so spektralnym parametrom i razryvnoi nelineinostyu”, Izv. vuzov. Matem., 2005, no. 4, 49–55 | MR | Zbl

[3] D. K. Potapov, “Approksimatsiya zadachi Dirikhle dlya uravneniya ellipticheskogo tipa vysokogo poryadka so spektralnym parametrom i razryvnoi nelineinostyu”, Differents. uravneniya, 43:7 (2007), 1002–1003 | MR | Zbl

[4] M. A. Krasnoselskii, A. V. Pokrovskii, “Uravneniya s razryvnymi nelineinostyami”, Dokl. AN SSSR, 248:5 (1979), 1056–1059 | MR | Zbl

[5] M. A. Goldshtik, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR, 147:6 (1962), 1310–1313 | Zbl

[6] D. K. Potapov, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Izv. RAEN. Ser. MMMIU, 8:3–4 (2004), 163–170

[7] D. K. Potapov, “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 44:5 (2008), 715–716 | MR | Zbl

[8] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 2. Spektralnaya teoriya, IL, M., 1966 | MR | Zbl

[9] V. N. Pavlenko, D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl