Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 246-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the local solvability of the initial boundary-value problem for the system of equations of one-dimensional nonstationary motion of a heat-conducting two-phase mixture (gas plus solid particles). For the case in which the real densities of the phases are constant, we establish the solvability “in the large” with respect to time.
Keywords: motion of a heat-conducting two-phase mixture, quasilinear system of equations, Hölder space, Lagrangian variable, Cauchy problem, Tikhonov–Schauder theorem, incompressible medium.
Mots-clés : viscous gas, Lebesgue space, parabolic equation
@article{MZM_2010_87_2_a6,
     author = {A. A. Papin and I. G. Akhmerova},
     title = {Solvability of the {System} of {Equations} of {One-Dimensional} {Motion} of a {Heat-Conducting} {Two-Phase} {Mixture}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {246--261},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a6/}
}
TY  - JOUR
AU  - A. A. Papin
AU  - I. G. Akhmerova
TI  - Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture
JO  - Matematičeskie zametki
PY  - 2010
SP  - 246
EP  - 261
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a6/
LA  - ru
ID  - MZM_2010_87_2_a6
ER  - 
%0 Journal Article
%A A. A. Papin
%A I. G. Akhmerova
%T Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture
%J Matematičeskie zametki
%D 2010
%P 246-261
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a6/
%G ru
%F MZM_2010_87_2_a6
A. A. Papin; I. G. Akhmerova. Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 246-261. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a6/

[1] S. K. Garg, J. W. Pritchett, “Dynamics of gas-fluidized beds”, J. Appl. Phys., 46:10 (1975), 4493–4500 | DOI

[2] M. Göz, “Existence and uniqueness of time-dependent spatially periodic solutions of fluidized bed equations”, Z. Angew. Math. Mech., 71:6 (1991), T750–T751 | MR | Zbl

[3] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Novosibirsk, Izd-vo «Nauka», Sib. otd., 1983 | MR | Zbl

[4] Ya. I. Kanel, “Ob odnoi modelnoi sisteme uravnenii odnomernogo dvizheniya gaza”, Differen. uravneniya, 4:4 (1968), 721–734 | MR | Zbl

[5] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, M., Nauka, 1967 | MR | Zbl

[6] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, M., Mir, 1969 | MR | Zbl