Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 233-245
Voir la notice de l'article provenant de la source Math-Net.Ru
The classical Borsuk problem on partitioning sets into pieces of smaller diameter is considered. A new upper bound for
$$
d_5^3=\sup_{\Phi\subset\mathbb R^3,\operatorname{diam}\Phi=1}\inf\{x\ge0:\Phi=\Phi_1\cup\Phi_2\cup\dots\cup\Phi_5,\operatorname{diam}\Phi_i\le x\}
$$
is given, which improves the previous bound obtained by Lassak in 1982.
Keywords:
Borsuk's problem, diameter of a set, Lassak's bound, Jung's ball, Helly's theorem, isometry.
Mots-clés : partition of 3D sets, Gale's conjecture
Mots-clés : partition of 3D sets, Gale's conjecture
@article{MZM_2010_87_2_a5,
author = {A. B. Kupavskii and A. M. Raigorodskii},
title = {Partition of {Three-Dimensional} {Sets} into {Five} {Parts} of {Smaller} {Diameter}},
journal = {Matemati\v{c}eskie zametki},
pages = {233--245},
publisher = {mathdoc},
volume = {87},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/}
}
TY - JOUR AU - A. B. Kupavskii AU - A. M. Raigorodskii TI - Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter JO - Matematičeskie zametki PY - 2010 SP - 233 EP - 245 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/ LA - ru ID - MZM_2010_87_2_a5 ER -
A. B. Kupavskii; A. M. Raigorodskii. Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 233-245. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/