Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 233-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Borsuk problem on partitioning sets into pieces of smaller diameter is considered. A new upper bound for $$ d_5^3=\sup_{\Phi\subset\mathbb R^3,\operatorname{diam}\Phi=1}\inf\{x\ge0:\Phi=\Phi_1\cup\Phi_2\cup\dots\cup\Phi_5,\operatorname{diam}\Phi_i\le x\} $$ is given, which improves the previous bound obtained by Lassak in 1982.
Keywords: Borsuk's problem, diameter of a set, Lassak's bound, Jung's ball, Helly's theorem, isometry.
Mots-clés : partition of 3D sets, Gale's conjecture
@article{MZM_2010_87_2_a5,
     author = {A. B. Kupavskii and A. M. Raigorodskii},
     title = {Partition of {Three-Dimensional} {Sets} into {Five} {Parts} of {Smaller} {Diameter}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {233--245},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/}
}
TY  - JOUR
AU  - A. B. Kupavskii
AU  - A. M. Raigorodskii
TI  - Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter
JO  - Matematičeskie zametki
PY  - 2010
SP  - 233
EP  - 245
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/
LA  - ru
ID  - MZM_2010_87_2_a5
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%A A. M. Raigorodskii
%T Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter
%J Matematičeskie zametki
%D 2010
%P 233-245
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/
%G ru
%F MZM_2010_87_2_a5
A. B. Kupavskii; A. M. Raigorodskii. Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 233-245. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/

[1] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | MR | Zbl

[2] A. M. Raigorodskii, “Vokrug gipotezy Borsuka”, Geometriya i mekhanika, SMFN, 23, RUDN, M., 2007, 147–164 | MR | Zbl

[3] A. M. Raigorodskii, “Three lectures on the Borsuk partition problem”, Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 202–247 | MR | Zbl

[4] A. M. Raigorodskii, “The Borsuk partition problem: the seventieth anniversary”, Math. Intelligencer, 26:3 (2004), 4–12 | DOI | MR | Zbl

[5] A. M. Raigorodskii, Problema Borsuka, MTsNMO, M., 2006

[6] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007

[7] V. Boltyanski, H. Martini, P. S. Soltan, Excursions into Combinatorial Geometry, Universitext, Springer-Verlag, Berlin, 1997 | MR | Zbl

[8] V. G. Boltyanskii, I. Ts. Gokhberg, Teoremy i zadachi kombinatornoi geometrii, Nauka, M., 1965 | MR | Zbl

[9] H. Lenz, “Zerlegung ebener Bereiche in konvexe Zellen von möglichst kleinem Durchmesser”, Jahresber. Deutsch. Math.-Verein., 58 (1956), 87–97 | MR | Zbl

[10] H. Lenz, “Über die Bedeckung ebener Punktmengen durch solche kleineren Durchmessers”, Arch. Math. (Basel), 7 (1956), 34–40 | DOI | MR | Zbl

[11] V. P. Filimonov, “O pokrytii ploskikh mnozhestv”, Matem. sb. (to appear)

[12] D. Gale, “On inscribing $n$-dimensional sets in a regular $n$-simplex”, Proc. Amer. Math. Soc., 4:2 (1953), 222–225 | DOI | MR | Zbl

[13] B. Grünbaum, “A simple proof of Borsuk's conjecture in three dimensions”, Proc. Cambridge Philos. Soc., 53 (1957), 776–778 | DOI | MR | Zbl

[14] A. Heppes, “On the partitioning of three-dimensional point-sets into sets of smaller diameter”, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 7 (1957), 413–416 | MR | Zbl

[15] V. V. Makeev, “Ob affinnykh obrazakh rombododekaedra, opisannykh vokrug trekhmernogo vypuklogo tela”, Geometriya i topologiya. 2, Zap. nauchn. sem. POMI, 246, POMI, SPb., 1997, 191–195 | MR | Zbl

[16] M. Lassak, “An estimate concerning Borsuk partition problem”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 30:9–10 (1982), 449–451 | MR | Zbl

[17] L. Dantser, B. Gryunbaum, V. Kli, Teorema Khelli i ee primeneniya, Mir, M., 1968 | MR | Zbl

[18] A. M. Raigorodskii, Yu. A. Kalnishkan, “O probleme Borsuka v $\mathbb R^3$”, Matem. zametki, 74:1 (2003), 149–151 | MR | Zbl

[19] B. Weissbach, “Polyhedral covers”, Intuitive Geometry (Siófok, 1985), Colloq. Math. Soc. János Bolyai, 48, North-Holland, Amsterdam, 1987, 639–646 | MR | Zbl

[20] B. B. Makeev, “Universalnye pokryshki i proektsii tel postoyannoi shiriny”, Ukr. geom. sb., 32 (1989), 84–88 | MR | Zbl