Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 233-245

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Borsuk problem on partitioning sets into pieces of smaller diameter is considered. A new upper bound for $$ d_5^3=\sup_{\Phi\subset\mathbb R^3,\operatorname{diam}\Phi=1}\inf\{x\ge0:\Phi=\Phi_1\cup\Phi_2\cup\dots\cup\Phi_5,\operatorname{diam}\Phi_i\le x\} $$ is given, which improves the previous bound obtained by Lassak in 1982.
Keywords: Borsuk's problem, diameter of a set, Lassak's bound, Jung's ball, Helly's theorem, isometry.
Mots-clés : partition of 3D sets, Gale's conjecture
@article{MZM_2010_87_2_a5,
     author = {A. B. Kupavskii and A. M. Raigorodskii},
     title = {Partition of {Three-Dimensional} {Sets} into {Five} {Parts} of {Smaller} {Diameter}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {233--245},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/}
}
TY  - JOUR
AU  - A. B. Kupavskii
AU  - A. M. Raigorodskii
TI  - Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter
JO  - Matematičeskie zametki
PY  - 2010
SP  - 233
EP  - 245
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/
LA  - ru
ID  - MZM_2010_87_2_a5
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%A A. M. Raigorodskii
%T Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter
%J Matematičeskie zametki
%D 2010
%P 233-245
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/
%G ru
%F MZM_2010_87_2_a5
A. B. Kupavskii; A. M. Raigorodskii. Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 233-245. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a5/