Multipoint Hermite--Pad\'e Approximations for Beta Functions
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 217-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct multipoint Hermite–Padé approximations for two beta functions generating the Nikishin system with infinite discrete measures and unbounded supports. The asymptotic behavior of the approximants is studied. The result is interpreted in terms of the vector equilibrium problem in logarithmic potential theory in the presence of an external field and constraints on measure.
Keywords: Hermite–Padé approximation, beta function, pole of a meromorphic function, logarithmic potential, Mittag–Leffler expansion, Riemann sphere
Mots-clés : Laurent series, Cauchy transform, Rodrigues formula, Lebesgue measure.
@article{MZM_2010_87_2_a4,
     author = {A. A. Kandayan and V. N. Sorokin},
     title = {Multipoint {Hermite--Pad\'e} {Approximations} for {Beta} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--232},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a4/}
}
TY  - JOUR
AU  - A. A. Kandayan
AU  - V. N. Sorokin
TI  - Multipoint Hermite--Pad\'e Approximations for Beta Functions
JO  - Matematičeskie zametki
PY  - 2010
SP  - 217
EP  - 232
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a4/
LA  - ru
ID  - MZM_2010_87_2_a4
ER  - 
%0 Journal Article
%A A. A. Kandayan
%A V. N. Sorokin
%T Multipoint Hermite--Pad\'e Approximations for Beta Functions
%J Matematičeskie zametki
%D 2010
%P 217-232
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a4/
%G ru
%F MZM_2010_87_2_a4
A. A. Kandayan; V. N. Sorokin. Multipoint Hermite--Pad\'e Approximations for Beta Functions. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 217-232. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a4/

[1] A. A. Kandayan, “Mnogotochechnye approksimatsii Pade beta-funktsii”, Matem. zametki, 85:2 (2009), 189–203 | MR | Zbl

[2] A. A. Gonchar, E. A. Rakhmanov, “O zadache ravnovesiya dlya vektornykh potentsialov”, UMN, 40:4 (1985), 155–156 | MR | Zbl

[3] E. A. Rakhmanov, “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov diskretnoi peremennoi”, Matem. sb., 187:8 (1996), 109–124 | MR | Zbl

[4] E. M. Nikishin, “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113:4 (1980), 499–519 | MR | Zbl

[5] E. M. Nikishin, “Ob asimptotike lineinykh form dlya sovmestnykh approksimatsii Pade”, Izv. vuzov. Matem., 1986, no. 2, 33–41 | MR | Zbl

[6] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Ob approksimatsiyakh Ermita–Pade dlya sistem funktsii markovskogo tipa”, Matem. sb., 188:5 (1997), 33–58 | MR | Zbl

[7] E. Coussement, W. Van Assche, “Asymptotics of multiple orthogonal polynomials associated with the modified Bessel functions of the first kind”, J. Comput. Appl. Math., 153:1–2 (2003), 141–149 | DOI | MR | Zbl

[8] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 ; arXiv: math.CA/0712.1333 | MR | Zbl

[9] V. N. Sorokin, “Obobschennye mnogochleny Polacheka”, Matem. sb., 200:4 (2009), 113–130 | MR | Zbl