G\r{a}rding's Inequality for Elliptic Operators with Degeneracy
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 201-216
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove Gårding's weighted inequality for degenerate elliptic operators in an arbitrary (bounded or unbounded) domain of $n$-dimensional Euclidean space $\mathbb R^n$ and use this inequality to study the unique solvability of a specific variational problem. It is assumed that the lower coefficients of the operators under consideration belong to some weighted $L_p$-spaces.
Keywords:
degenerate elliptic operator, Gårding's inequality, variational Dirichlet problem, elliptic operator, Euclidean space $\mathbb R^n$, Minkowski's inequality, Cauchy–Schwarz inequality.
@article{MZM_2010_87_2_a3,
author = {S. A. Iskhokov},
title = {G\r{a}rding's {Inequality} for {Elliptic} {Operators} with {Degeneracy}},
journal = {Matemati\v{c}eskie zametki},
pages = {201--216},
publisher = {mathdoc},
volume = {87},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a3/}
}
S. A. Iskhokov. G\r{a}rding's Inequality for Elliptic Operators with Degeneracy. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 201-216. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a3/