G\r{a}rding's Inequality for Elliptic Operators with Degeneracy
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 201-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove Gårding's weighted inequality for degenerate elliptic operators in an arbitrary (bounded or unbounded) domain of $n$-dimensional Euclidean space $\mathbb R^n$ and use this inequality to study the unique solvability of a specific variational problem. It is assumed that the lower coefficients of the operators under consideration belong to some weighted $L_p$-spaces.
Keywords: degenerate elliptic operator, Gårding's inequality, variational Dirichlet problem, elliptic operator, Euclidean space $\mathbb R^n$, Minkowski's inequality, Cauchy–Schwarz inequality.
@article{MZM_2010_87_2_a3,
     author = {S. A. Iskhokov},
     title = {G\r{a}rding's {Inequality} for {Elliptic} {Operators} with {Degeneracy}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {201--216},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a3/}
}
TY  - JOUR
AU  - S. A. Iskhokov
TI  - G\r{a}rding's Inequality for Elliptic Operators with Degeneracy
JO  - Matematičeskie zametki
PY  - 2010
SP  - 201
EP  - 216
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a3/
LA  - ru
ID  - MZM_2010_87_2_a3
ER  - 
%0 Journal Article
%A S. A. Iskhokov
%T G\r{a}rding's Inequality for Elliptic Operators with Degeneracy
%J Matematičeskie zametki
%D 2010
%P 201-216
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a3/
%G ru
%F MZM_2010_87_2_a3
S. A. Iskhokov. G\r{a}rding's Inequality for Elliptic Operators with Degeneracy. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 201-216. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a3/

[1] L. D. Kudryavtsev, “Pryamye i obratnye teoremy vlozheniya. Prilozheniya k resheniyu variatsionnym metodom ellipticheskikh uravnenii”, Tr. MIAN, 55, Izd-vo AN SSSR, M., 1959, 3–182 | MR | Zbl

[2] S. M. Nikolskii, P. I. Lizorkin, N. V. Miroshin, “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izv. vuzov. Matem., 1988, no. 8, 4–30 | MR | Zbl

[3] N. V. Miroshin, “Variatsonnaya zadacha Dirikhle dlya vyrozhdayuschegosya na granitse ellipticheskogo operatora”, Differents. uravneniya, 24:3 (1988), 455–464 | MR | Zbl

[4] S. A. Iskhokov, “O gladkosti resheniya vyrozhdayuschikhsya differentsialnykh uravnenii”, Differents. uravneniya, 31:4 (1995), 641–653 | MR | Zbl

[5] S. A. Iskhokov, “On solvability and smoothness of a solution of the variational Dirichlet problem for degenerate elliptic equations in the half-space”, Matem. zametki YaGU, 5:2 (1999), 86–106 | Zbl

[6] S. A. Iskhokov, “O gladkosti obobschennogo resheniya ellipticheskogo uravneniya s nestepennym vyrozhdeniem”, Differents. uravneniya, 39:11 (2003), 1536–1542 | MR | Zbl

[7] L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa (3), 13:3 (1959), 115–162 | MR | Zbl

[8] V. I. Burenkov, Sobolev Spaces on Domains, Teubner-Texte Math., 137, B. G. Teubner, Stuttgart, 1998 | MR | Zbl

[9] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl

[10] Yu. V. Egorov, Lektsii po uravneniyam s chastnymi proizvodnymi. Dopolnitelnye glavy, Ucheb. posobie, MGU, M., 1985 | MR | Zbl