On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 179-200

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a parabolic system of the form $\partial_tu=\operatorname{div}_xA(x,t,\nabla_xu)$ in a bounded cylinder $Q_T=\Omega\times(0,T)\subset\mathbb R^{n+1}_{x,t}$. Here the matrix function $A(x,t,\xi)$ is subject to the conditions of power growth in the variable $\xi$ and coercitivity with variable exponent $p(x,t)$. It is assumed that $p(x,t)$ has a logarithmic modulus of continuity and satisfies the estimate $$ \frac{2n}{n+2}\alpha\le p(x,t)\le\beta\infty. $$ For the weak solution of the system, estimates of the higher integrability of the gradient are obtained inside the cylinder $Q_T$. The method of a solution is based on a localization of a special kind and a local variant (adapted for parabolic problems) of Gehring's lemma with variable exponent of integrability proved in the paper.
Keywords: parabolic system of variable order of nonlinearity, higher integrability for parabolic systems, Cacciopolli's inequality, Sobolev–Poincaré inequalities, Hölder's reverse inequality, Gehring's lemma, Sobolev–Orlicz space, Orlicz space.
Mots-clés : Lebesgue space
@article{MZM_2010_87_2_a2,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {On the {Property} of {Higher} {Integrability} for {Parabolic} {Systems} of {Variable} {Order} of {Nonlinearity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {179--200},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity
JO  - Matematičeskie zametki
PY  - 2010
SP  - 179
EP  - 200
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/
LA  - ru
ID  - MZM_2010_87_2_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity
%J Matematičeskie zametki
%D 2010
%P 179-200
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/
%G ru
%F MZM_2010_87_2_a2
V. V. Zhikov; S. E. Pastukhova. On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 179-200. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/