Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_2_a2, author = {V. V. Zhikov and S. E. Pastukhova}, title = {On the {Property} of {Higher} {Integrability} for {Parabolic} {Systems} of {Variable} {Order} of {Nonlinearity}}, journal = {Matemati\v{c}eskie zametki}, pages = {179--200}, publisher = {mathdoc}, volume = {87}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/} }
TY - JOUR AU - V. V. Zhikov AU - S. E. Pastukhova TI - On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity JO - Matematičeskie zametki PY - 2010 SP - 179 EP - 200 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/ LA - ru ID - MZM_2010_87_2_a2 ER -
V. V. Zhikov; S. E. Pastukhova. On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 179-200. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/
[1] J. Kinnunen, J. L. Lewis, “Higher integrability for parabolic systems of $p$-Laplacian type”, Duke Math. J., 102:2 (2000), 253–271 | DOI | MR | Zbl
[2] S. Antontsev, V. Zhikov, “Higher integrability for parabolic equations of $p(x,t)$-Laplacian type”, Adv. Differential Equations, 10:9 (2005), 1053–1080 | MR | Zbl
[3] O. A. Ladyzhenskaya, V. A. Solonnikov, N. M. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl
[4] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993 | MR | Zbl
[5] M. Giaquinta, G. Modica, “Regularity results for some classes of higher order nonlinear elliptic systems”, J. Reine Angew. Math., 311/312 (1979), 145–169 | MR | Zbl
[6] M. Giaquinta, Multiple Integrals in the Calculus of Variation and Nonlinear Elliptic Systems, Ann. of Math. Stud, 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl
[7] F. W. Gehring, “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl
[8] V. V. Zhikov, “O plotnosti gladkikh funktsii v prostranstve Soboleva–Orlicha”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 35, Zap. nauchn. sem. POMI, 310, POMI, SPb., 2004, 67–81 | MR | Zbl
[9] D. E. Edmunds, J. Rákosník, “Sobolev embeddings with variable exponent”, Studia Math., 143:3 (2000), 267–293 | MR | Zbl
[10] X. Fan, J. Shen, D. Zhao, “Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$”, J. Math. Anal. Appl., 262:2 (2001), 749–760 | DOI | MR | Zbl