On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 179-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a parabolic system of the form $\partial_tu=\operatorname{div}_xA(x,t,\nabla_xu)$ in a bounded cylinder $Q_T=\Omega\times(0,T)\subset\mathbb R^{n+1}_{x,t}$. Here the matrix function $A(x,t,\xi)$ is subject to the conditions of power growth in the variable $\xi$ and coercitivity with variable exponent $p(x,t)$. It is assumed that $p(x,t)$ has a logarithmic modulus of continuity and satisfies the estimate $$ \frac{2n}{n+2}\alpha\le p(x,t)\le\beta\infty. $$ For the weak solution of the system, estimates of the higher integrability of the gradient are obtained inside the cylinder $Q_T$. The method of a solution is based on a localization of a special kind and a local variant (adapted for parabolic problems) of Gehring's lemma with variable exponent of integrability proved in the paper.
Keywords: parabolic system of variable order of nonlinearity, higher integrability for parabolic systems, Cacciopolli's inequality, Sobolev–Poincaré inequalities, Hölder's reverse inequality, Gehring's lemma, Sobolev–Orlicz space, Orlicz space.
Mots-clés : Lebesgue space
@article{MZM_2010_87_2_a2,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {On the {Property} of {Higher} {Integrability} for {Parabolic} {Systems} of {Variable} {Order} of {Nonlinearity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {179--200},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity
JO  - Matematičeskie zametki
PY  - 2010
SP  - 179
EP  - 200
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/
LA  - ru
ID  - MZM_2010_87_2_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity
%J Matematičeskie zametki
%D 2010
%P 179-200
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/
%G ru
%F MZM_2010_87_2_a2
V. V. Zhikov; S. E. Pastukhova. On the Property of Higher Integrability for Parabolic Systems of Variable Order of Nonlinearity. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 179-200. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a2/

[1] J. Kinnunen, J. L. Lewis, “Higher integrability for parabolic systems of $p$-Laplacian type”, Duke Math. J., 102:2 (2000), 253–271 | DOI | MR | Zbl

[2] S. Antontsev, V. Zhikov, “Higher integrability for parabolic equations of $p(x,t)$-Laplacian type”, Adv. Differential Equations, 10:9 (2005), 1053–1080 | MR | Zbl

[3] O. A. Ladyzhenskaya, V. A. Solonnikov, N. M. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl

[4] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993 | MR | Zbl

[5] M. Giaquinta, G. Modica, “Regularity results for some classes of higher order nonlinear elliptic systems”, J. Reine Angew. Math., 311/312 (1979), 145–169 | MR | Zbl

[6] M. Giaquinta, Multiple Integrals in the Calculus of Variation and Nonlinear Elliptic Systems, Ann. of Math. Stud, 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl

[7] F. W. Gehring, “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl

[8] V. V. Zhikov, “O plotnosti gladkikh funktsii v prostranstve Soboleva–Orlicha”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 35, Zap. nauchn. sem. POMI, 310, POMI, SPb., 2004, 67–81 | MR | Zbl

[9] D. E. Edmunds, J. Rákosník, “Sobolev embeddings with variable exponent”, Studia Math., 143:3 (2000), 267–293 | MR | Zbl

[10] X. Fan, J. Shen, D. Zhao, “Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$”, J. Math. Anal. Appl., 262:2 (2001), 749–760 | DOI | MR | Zbl