Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_2_a10, author = {A. Trofimuk}, title = {Derived {Length} of {Finite} {Groups} with {Restrictions} on {Sylow} {Subgroups}}, journal = {Matemati\v{c}eskie zametki}, pages = {287--293}, publisher = {mathdoc}, volume = {87}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a10/} }
A. Trofimuk. Derived Length of Finite Groups with Restrictions on Sylow Subgroups. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 287-293. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a10/
[1] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin–Heidelberg, 1967 | MR | Zbl
[2] V. S. Monakhov, E. E. Gribovskaya, “O maksimalnykh i silovskikh podgruppakh konechnykh razreshimykh grupp”, Matem. zametki, 70:4 (2001), 603–612 | MR | Zbl
[3] V. S. Monakhov, “Ob indeksakh maksimalnykh podgrupp konechnykh razreshimykh grupp”, Algebra i logika, 43:4 (2004), 411–424 | MR | Zbl
[4] H. Zassenhaus, “Beweis eines Satzes über diskrete Gruppen”, Abh. Math. Semin. Hansische Univ., 12 (1938), 289–312 | Zbl
[5] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006
[6] P. P. Pálfy, “Bounds for linear groups of odd order”, Rend. Circ. Mat. Palermo (2) Suppl., 23 (1990), 253–263 | MR | Zbl
[7] Y. Berkovich, “Solvable permutation groups of maximal derived length”, Algebra Colloq., 4:2 (1997), 175–186 | MR | Zbl
[8] A. Mann, “The derived length of $p$-groups”, J. Algebra, 224:2 (2000), 263–267 | MR | Zbl
[9] V. S. Monakhov, “K teoreme Khupperta–Shemetkova”, Tr. In-ta matem. AN Belorussii, 16:1 (2008), 64–66