Derived Length of Finite Groups with Restrictions on Sylow Subgroups
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 287-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dependence of the derived length of a finite solvable group on the orders of nonbicyclic Sylow subgroups of the Fitting subgroup is established.
Mots-clés : finite solvable group
Keywords: Sylow subgroup, bicyclic group, Fitting subgroup, Hall subgroup, Frattini subgroup, derived length of a group.
@article{MZM_2010_87_2_a10,
     author = {A. Trofimuk},
     title = {Derived {Length} of {Finite} {Groups} with {Restrictions} on {Sylow} {Subgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {287--293},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a10/}
}
TY  - JOUR
AU  - A. Trofimuk
TI  - Derived Length of Finite Groups with Restrictions on Sylow Subgroups
JO  - Matematičeskie zametki
PY  - 2010
SP  - 287
EP  - 293
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a10/
LA  - ru
ID  - MZM_2010_87_2_a10
ER  - 
%0 Journal Article
%A A. Trofimuk
%T Derived Length of Finite Groups with Restrictions on Sylow Subgroups
%J Matematičeskie zametki
%D 2010
%P 287-293
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a10/
%G ru
%F MZM_2010_87_2_a10
A. Trofimuk. Derived Length of Finite Groups with Restrictions on Sylow Subgroups. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 287-293. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a10/

[1] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin–Heidelberg, 1967 | MR | Zbl

[2] V. S. Monakhov, E. E. Gribovskaya, “O maksimalnykh i silovskikh podgruppakh konechnykh razreshimykh grupp”, Matem. zametki, 70:4 (2001), 603–612 | MR | Zbl

[3] V. S. Monakhov, “Ob indeksakh maksimalnykh podgrupp konechnykh razreshimykh grupp”, Algebra i logika, 43:4 (2004), 411–424 | MR | Zbl

[4] H. Zassenhaus, “Beweis eines Satzes über diskrete Gruppen”, Abh. Math. Semin. Hansische Univ., 12 (1938), 289–312 | Zbl

[5] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[6] P. P. Pálfy, “Bounds for linear groups of odd order”, Rend. Circ. Mat. Palermo (2) Suppl., 23 (1990), 253–263 | MR | Zbl

[7] Y. Berkovich, “Solvable permutation groups of maximal derived length”, Algebra Colloq., 4:2 (1997), 175–186 | MR | Zbl

[8] A. Mann, “The derived length of $p$-groups”, J. Algebra, 224:2 (2000), 263–267 | MR | Zbl

[9] V. S. Monakhov, “K teoreme Khupperta–Shemetkova”, Tr. In-ta matem. AN Belorussii, 16:1 (2008), 64–66