Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_2_a1, author = {T. G. zhao and L. Naing and W. X. Yue}, title = {Some {New} {Features} of the {Boubaker} {Polynomials} {Expansion} {Scheme} {BPES}}, journal = {Matemati\v{c}eskie zametki}, pages = {175--178}, publisher = {mathdoc}, volume = {87}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a1/} }
TY - JOUR AU - T. G. zhao AU - L. Naing AU - W. X. Yue TI - Some New Features of the Boubaker Polynomials Expansion Scheme BPES JO - Matematičeskie zametki PY - 2010 SP - 175 EP - 178 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a1/ LA - ru ID - MZM_2010_87_2_a1 ER -
T. G. zhao; L. Naing; W. X. Yue. Some New Features of the Boubaker Polynomials Expansion Scheme BPES. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 175-178. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a1/
[1] H. Labiadh, K. Boubaker, “A Sturm–Liouville shaped characteristic differential equation as a guide to establish a quasi-polynomial expression to the Boubaker polynomials”, Differents. uravneniya i protsessy upravl., 2007, no. 2, 117–133 | MR
[2] O. B. Awojoyogbe, K. Boubaker, “A solution to Bloch NMR flow equations for the analysis of hemodynamic functions of blood flow system using $m$-Boubaker polynomials”, Current Appl. Phys., 9:1 (2009), 278–283 | DOI
[3] J. Ghanouchi, H. Labiadh, K. Boubaker, “An attempt to solve the heat transfer equation in a model of pyrolysis spray using $4q$-order $m$-Boubaker polynomials”, Int. J. Heat Tech., 26 (2008), 49–52
[4] S. Slama, J. Bessrour, K. Boubaker, M. Bouhafs, “A dynamical model for investigation of $A_3$ point maximal spatial evolution during resistance spot welding using Boubaker polynomials”, Eur. Phys. J. Appl. Phys., 44 (2008), 317–322 | DOI
[5] S. Slama, M. Bouhafs, K. B. Ben Mahmoud, “A Boubaker polynomials solution to heat equation for monitoring $A_3$ point evolution during resistance spot welding”, Int. J. Heat Tech., 26:2, 141–146
[6] T. Ghrib, K. Boubaker, M. Bouhafs, “Investigation of thermal diffusivity-microhardness correlation extended to surface-nitrured steel using Boubaker polynomials expansion”, Mod. Phys. Lett. B, 22:19 (2008), 2893–2907 | DOI | Zbl
[7] S. Lazzez, K. B. Ben Mahmoud, “New ternary compounds stoichiometry-linked thermal behavior optimisation using Boubaker polynomials”, J. Alloys Compounds, 476:1–2 (2009), 769–773 | DOI
[8] V. I. Panteleev, “Polinomialnoe razlozhenie $k$-znachnykh funktsii po nevyrozhdennym funktsiyam”, Matem. zametki, 55:1 (1994), 144–149 | MR | Zbl
[9] A. Askari-Khemmat, M. A. Degkhan, M. A. Skopina, “Polinomialnye vspleskopodobnye razlozheniya funktsii na sfere”, Matem. zametki, 74:2 (2003), 292–300 | MR | Zbl
[10] L. B. Avgul, “Polinomialnoe razlozhenie simmetricheskikh bulevykh funktsii tablichnym metodom”, Kibernet. i sist. analiz, 1996, no. 6, 59–71 | MR | Zbl
[11] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, eds. M. Abramowitz, I. A. Stegun, National Bureau of Standards, Washington, DC, 1972 | MR | Zbl
[12] R. P. Agarwal, P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Math. Appl., 262, Kluwer Acad. Publ., Dordrecht, 1993 | MR | Zbl
[13] R. E. Barnhill, G. Birkhoff, W. J. Gordon, “Smooth interpolation in triangles”, J. Approx. Theory, 8:2 (1973), 114–128 | DOI | MR | Zbl
[14] R. P. Boas, Jr., “Representation of functions by Lidstone series”, Duke Math. J., 10:2 (1943), 239–245 | DOI | MR | Zbl
[15] J. D. Buckholtz, J. K. Shaw, “On functions expandable in Lidstone series”, J. Math. Anal. Appl., 47:3 (1974), 626–632 | DOI | MR | Zbl
[16] R. E. Barnhill, J. A. Gregory, “Polynomial interpolation to boundary data on triangles”, Math. Comp., 29:131 (1975), 726–735 | DOI | MR | Zbl