Some New Features of the Boubaker Polynomials Expansion Scheme BPES
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 175-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new properties of the Boubaker polynomials expansion scheme are presented in this paper. It is shown in particular that the Boubaker polynomials expansion scheme fits standard Cauchy boundary conditions.
Keywords: Boubaker polynomials expansion scheme, complex function of a real argument, Cauchy boundary conditions, weak solution.
@article{MZM_2010_87_2_a1,
     author = {T. G. zhao and L. Naing and W. X. Yue},
     title = {Some {New} {Features} of the {Boubaker} {Polynomials} {Expansion} {Scheme} {BPES}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {175--178},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a1/}
}
TY  - JOUR
AU  - T. G. zhao
AU  - L. Naing
AU  - W. X. Yue
TI  - Some New Features of the Boubaker Polynomials Expansion Scheme BPES
JO  - Matematičeskie zametki
PY  - 2010
SP  - 175
EP  - 178
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a1/
LA  - ru
ID  - MZM_2010_87_2_a1
ER  - 
%0 Journal Article
%A T. G. zhao
%A L. Naing
%A W. X. Yue
%T Some New Features of the Boubaker Polynomials Expansion Scheme BPES
%J Matematičeskie zametki
%D 2010
%P 175-178
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a1/
%G ru
%F MZM_2010_87_2_a1
T. G. zhao; L. Naing; W. X. Yue. Some New Features of the Boubaker Polynomials Expansion Scheme BPES. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 175-178. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a1/

[1] H. Labiadh, K. Boubaker, “A Sturm–Liouville shaped characteristic differential equation as a guide to establish a quasi-polynomial expression to the Boubaker polynomials”, Differents. uravneniya i protsessy upravl., 2007, no. 2, 117–133 | MR

[2] O. B. Awojoyogbe, K. Boubaker, “A solution to Bloch NMR flow equations for the analysis of hemodynamic functions of blood flow system using $m$-Boubaker polynomials”, Current Appl. Phys., 9:1 (2009), 278–283 | DOI

[3] J. Ghanouchi, H. Labiadh, K. Boubaker, “An attempt to solve the heat transfer equation in a model of pyrolysis spray using $4q$-order $m$-Boubaker polynomials”, Int. J. Heat Tech., 26 (2008), 49–52

[4] S. Slama, J. Bessrour, K. Boubaker, M. Bouhafs, “A dynamical model for investigation of $A_3$ point maximal spatial evolution during resistance spot welding using Boubaker polynomials”, Eur. Phys. J. Appl. Phys., 44 (2008), 317–322 | DOI

[5] S. Slama, M. Bouhafs, K. B. Ben Mahmoud, “A Boubaker polynomials solution to heat equation for monitoring $A_3$ point evolution during resistance spot welding”, Int. J. Heat Tech., 26:2, 141–146

[6] T. Ghrib, K. Boubaker, M. Bouhafs, “Investigation of thermal diffusivity-microhardness correlation extended to surface-nitrured steel using Boubaker polynomials expansion”, Mod. Phys. Lett. B, 22:19 (2008), 2893–2907 | DOI | Zbl

[7] S. Lazzez, K. B. Ben Mahmoud, “New ternary compounds stoichiometry-linked thermal behavior optimisation using Boubaker polynomials”, J. Alloys Compounds, 476:1–2 (2009), 769–773 | DOI

[8] V. I. Panteleev, “Polinomialnoe razlozhenie $k$-znachnykh funktsii po nevyrozhdennym funktsiyam”, Matem. zametki, 55:1 (1994), 144–149 | MR | Zbl

[9] A. Askari-Khemmat, M. A. Degkhan, M. A. Skopina, “Polinomialnye vspleskopodobnye razlozheniya funktsii na sfere”, Matem. zametki, 74:2 (2003), 292–300 | MR | Zbl

[10] L. B. Avgul, “Polinomialnoe razlozhenie simmetricheskikh bulevykh funktsii tablichnym metodom”, Kibernet. i sist. analiz, 1996, no. 6, 59–71 | MR | Zbl

[11] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, eds. M. Abramowitz, I. A. Stegun, National Bureau of Standards, Washington, DC, 1972 | MR | Zbl

[12] R. P. Agarwal, P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Math. Appl., 262, Kluwer Acad. Publ., Dordrecht, 1993 | MR | Zbl

[13] R. E. Barnhill, G. Birkhoff, W. J. Gordon, “Smooth interpolation in triangles”, J. Approx. Theory, 8:2 (1973), 114–128 | DOI | MR | Zbl

[14] R. P. Boas, Jr., “Representation of functions by Lidstone series”, Duke Math. J., 10:2 (1943), 239–245 | DOI | MR | Zbl

[15] J. D. Buckholtz, J. K. Shaw, “On functions expandable in Lidstone series”, J. Math. Anal. Appl., 47:3 (1974), 626–632 | DOI | MR | Zbl

[16] R. E. Barnhill, J. A. Gregory, “Polynomial interpolation to boundary data on triangles”, Math. Comp., 29:131 (1975), 726–735 | DOI | MR | Zbl