Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_2_a0, author = {A. A. Borisenko and E. A. Olin}, title = {The {Global} {Structure} of {Locally} {Convex} {Hypersurfaces} in {Finsler--Hadamard} {Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {163--174}, publisher = {mathdoc}, volume = {87}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a0/} }
TY - JOUR AU - A. A. Borisenko AU - E. A. Olin TI - The Global Structure of Locally Convex Hypersurfaces in Finsler--Hadamard Manifolds JO - Matematičeskie zametki PY - 2010 SP - 163 EP - 174 VL - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a0/ LA - ru ID - MZM_2010_87_2_a0 ER -
A. A. Borisenko; E. A. Olin. The Global Structure of Locally Convex Hypersurfaces in Finsler--Hadamard Manifolds. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a0/
[1] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl
[2] J. Van Heijenoort, “On locally convex manifolds”, Comm. Pure Appl. Math., 5:3 (1952), 223–242 | DOI | MR | Zbl
[3] S. Alexander, “Locally convex hypersurfaces of negatively curved spaces”, Proc. Amer. Math. Soc., 64:2 (1977), 321–325 | DOI | MR | Zbl
[4] A. A. Borisenko, “O lokalno vypuklykh giperpoverkhnostyakh v mnogoobraziyakh Adamara”, Matem. zametki, 67:4 (2000), 498–507 | MR | Zbl
[5] V. K. Ionin, “Zamknutye geodezicheskie v odnosvyaznykh rimanovykh prostranstvakh otritsatelnoi krivizny”, Sib. matem. zhurn., 41:5 (2000), 1076–1080 | MR | Zbl
[6] Z. Shen, Lectures on Finsler Geometry, World Sci. Publ., Singapore, 2001 | MR | Zbl
[7] D. Egloff, “Uniform Finsler Hadamard manifolds”, Ann. Inst. H. Poincaré Phys. Théor., 66:3 (1997), 323–357 | MR | Zbl
[8] Yu. D. Burago, V. A. Zalgaller, Geometricheskie neravenstva, Izd-vo «Nauka», Leningrad. otd., L., 1980 | MR | Zbl
[9] F. W. Warner, “Extension of the Rauch comparison theorem to submanifolds”, Trans. Amer. Math. Soc., 122:2 (1966), 341–356 | DOI | MR | Zbl
[10] D. Bao, S.-S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry, Grad. Texts in Math., 200, Springer-Verlag, New York, NY, 2000 | MR | Zbl
[11] R. L. Bishop, “Infinitesimal convexity implies local convexity”, Indiana Univ. Math. J., 24:2 (1974), 169–172 | MR | Zbl