The Global Structure of Locally Convex Hypersurfaces in Finsler--Hadamard Manifolds
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 163-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

Locally convex compact immersed hypersurfaces in the Finsler–Hadamard space with bounded $T$-curvature are considered. Under certain conditions on normal curvatures, such hypersurfaces are proved to be convex, embedded, and homeomorphic to the sphere. To this end, the Rauch theorem is generalized to exponential maps of hypersurfaces and the convexity of parallel hypersurfaces is proved.
Keywords: Riemannian manifold, Rauch comparison theorem, Finsler metric, Gaussian, sectional, normal curvature, locally convex immersion, $T$-curvature, parallel hypersurface, Levi-Cività connection.
@article{MZM_2010_87_2_a0,
     author = {A. A. Borisenko and E. A. Olin},
     title = {The {Global} {Structure} of {Locally} {Convex} {Hypersurfaces} in {Finsler--Hadamard} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--174},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a0/}
}
TY  - JOUR
AU  - A. A. Borisenko
AU  - E. A. Olin
TI  - The Global Structure of Locally Convex Hypersurfaces in Finsler--Hadamard Manifolds
JO  - Matematičeskie zametki
PY  - 2010
SP  - 163
EP  - 174
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a0/
LA  - ru
ID  - MZM_2010_87_2_a0
ER  - 
%0 Journal Article
%A A. A. Borisenko
%A E. A. Olin
%T The Global Structure of Locally Convex Hypersurfaces in Finsler--Hadamard Manifolds
%J Matematičeskie zametki
%D 2010
%P 163-174
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a0/
%G ru
%F MZM_2010_87_2_a0
A. A. Borisenko; E. A. Olin. The Global Structure of Locally Convex Hypersurfaces in Finsler--Hadamard Manifolds. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 163-174. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a0/

[1] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[2] J. Van Heijenoort, “On locally convex manifolds”, Comm. Pure Appl. Math., 5:3 (1952), 223–242 | DOI | MR | Zbl

[3] S. Alexander, “Locally convex hypersurfaces of negatively curved spaces”, Proc. Amer. Math. Soc., 64:2 (1977), 321–325 | DOI | MR | Zbl

[4] A. A. Borisenko, “O lokalno vypuklykh giperpoverkhnostyakh v mnogoobraziyakh Adamara”, Matem. zametki, 67:4 (2000), 498–507 | MR | Zbl

[5] V. K. Ionin, “Zamknutye geodezicheskie v odnosvyaznykh rimanovykh prostranstvakh otritsatelnoi krivizny”, Sib. matem. zhurn., 41:5 (2000), 1076–1080 | MR | Zbl

[6] Z. Shen, Lectures on Finsler Geometry, World Sci. Publ., Singapore, 2001 | MR | Zbl

[7] D. Egloff, “Uniform Finsler Hadamard manifolds”, Ann. Inst. H. Poincaré Phys. Théor., 66:3 (1997), 323–357 | MR | Zbl

[8] Yu. D. Burago, V. A. Zalgaller, Geometricheskie neravenstva, Izd-vo «Nauka», Leningrad. otd., L., 1980 | MR | Zbl

[9] F. W. Warner, “Extension of the Rauch comparison theorem to submanifolds”, Trans. Amer. Math. Soc., 122:2 (1966), 341–356 | DOI | MR | Zbl

[10] D. Bao, S.-S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry, Grad. Texts in Math., 200, Springer-Verlag, New York, NY, 2000 | MR | Zbl

[11] R. L. Bishop, “Infinitesimal convexity implies local convexity”, Indiana Univ. Math. J., 24:2 (1974), 169–172 | MR | Zbl