Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_1_a8, author = {O. V. Markova}, title = {On {Some} {Properties} of the {Length} {Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {83--91}, publisher = {mathdoc}, volume = {87}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a8/} }
O. V. Markova. On Some Properties of the Length Function. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a8/
[1] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR | Zbl
[2] A. J. M. Spencer, R. S. Rivlin, “The theory of matrix polynomials and its application to the mechanics of isotropic continua”, Arch. Rational Mech. Anal., 2 (1959), 309–336 | DOI | MR | Zbl
[3] A. J. M. Spencer, R. S. Rivlin, “Further results in the theory of matrix polynomials”, Arch. Rational Mech. Anal., 4 (1960), 214–230 | DOI | MR | Zbl
[4] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear and Multilinear Algebra, 15:2 (1984), 161–170 | DOI | MR | Zbl
[5] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197:2 (1997), 535–545 | DOI | MR | Zbl
[6] G. Birkhoff, “On the structure of abstract algebras”, Math. Proc. Cambridge Philos. Soc., 31 (1935), 433–454 | DOI | Zbl
[7] P. Kon, Universalnaya algebra, Mir, M., 1968 | MR | Zbl
[8] O. V. Markova, “O dline algebry verkhnetreugolnykh matrits”, UMN, 60:5 (2005), 177–178 | MR | Zbl
[9] O. V. Markova, “Vychislenie dlin matrichnykh podalgebr spetsialnogo vida”, Fundament. i prikl. matem., 13:4 (2007), 165–197 | MR
[10] A. E. Guterman, O. V. Markova, “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430:7 (2009), 1790–1805 | DOI | MR | Zbl