Sets with the Pompeiu Property on the Plane and on the Sphere
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 69-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new sufficient conditions under which a set on the plane has the Pompeiu property. This result allows us to construct first examples of domains with the Pompeiu property with non-Lipschitz (and even fractal) boundary. In addition, we study the problem of determining the least radius of the ball on the sphere in which a given set is a Pompeiu set. We obtain the solution of this problem in the case of a biangle and a spherical half-disk. We also consider some applications to questions of complex analysis.
Mots-clés : Pompeiu problem, biangle
Keywords: Pompeiu property, non-Lipschitz boundary, spherical half-disk, Koch snowflake, Morera-type theorems, Laplace operator.
@article{MZM_2010_87_1_a7,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Sets with the {Pompeiu} {Property} on the {Plane} and on the {Sphere}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a7/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Sets with the Pompeiu Property on the Plane and on the Sphere
JO  - Matematičeskie zametki
PY  - 2010
SP  - 69
EP  - 82
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a7/
LA  - ru
ID  - MZM_2010_87_1_a7
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Sets with the Pompeiu Property on the Plane and on the Sphere
%J Matematičeskie zametki
%D 2010
%P 69-82
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a7/
%G ru
%F MZM_2010_87_1_a7
V. V. Volchkov; Vit. V. Volchkov. Sets with the Pompeiu Property on the Plane and on the Sphere. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 69-82. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a7/

[1] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations (Hanstholm, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 365, Kluwer Acad. Publ., Dordrecht, 1992, 185–194 | MR | Zbl

[2] L. Zalcman, “Supplementary bibliography to: "A bibliographic survey of the Pompeiu problem”, Radon Transforms and Tomography (South Hadley, MA, 2000), Contemp. Math., 278, Amer. Math. Soc., Providence, RI, 2001, 69–74 | MR | Zbl

[3] K. Berenstein, D. Struppa, “Kompleksnyi analiz i uravneniya v svertkakh”, Kompleksnyi analiz – mnogie peremennye – 5, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 54, VINITI, M., 1989, 5–111 | MR | Zbl

[4] V. V. Volchkov, Vit. V. Volchkov, “Ekstremalnye zadachi integralnoi geometrii”, Matematika segodnya, 12, Nauchno-metodicheskii tsentr vysshego obrazovaniya, Kiev, 2001, 51–79 | MR | Zbl

[5] V. V. Volchkov, Integral Geometry and Convolution Equations, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl

[6] S. A. Williams, “A partial solution of the Pompeiu problem”, Math. Ann., 223:2 (1976), 183–190 | DOI | MR | Zbl

[7] S. A. Williams, “Analyticity of the boundary for Lipschitz domains without the Pompeiu property”, Indiana Univ. Math. J., 30:3 (1981), 357–369 | MR | Zbl

[8] R. Dalmasso, “A new result on the Pompeiu problem”, Trans. Amer. Math. Soc., 352:6 (2000), 2723–2736 | DOI | MR | Zbl

[9] N. Garofalo, F. Segàla, “Univalent functions and the Pompeiu problem”, Trans. Amer. Math. Soc., 346:1 (1994), 137–146 | DOI | MR | Zbl

[10] P. Ebenfelt, “Propagation of singularities from singular and infinite points in certain complex-analytic Cauchy problems and an application to the Pompeiu problem”, Duke Math. J., 73:3 (1994), 561–582 | DOI | MR | Zbl

[11] S. Khelgason, Gruppy i geometricheskii analiz. Integralnaya geometriya, invariantnye differentsialnye operatory i sfericheskie funktsii, Mir, M., 1987 | MR | Zbl

[12] C. A. Berenstein, M. Shahshahani, “Harmonic analysis and the Pompeiu problem”, Amer. J. Math., 105:5 (1983), 1217–1229 | DOI | MR | Zbl

[13] P. Ungar, “Freak theorem about functions on a sphere”, J. London Math. Soc., 29 (1954), 100–103 | DOI | MR | Zbl

[14] D. H. Armitage, “The Pompeiu property for spherical polygons”, Proc. Roy. Irish Acad. Sect. A, 96:1 (1996), 25–32 | MR | Zbl

[15] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:4 (1980), 593–621 | DOI | MR | Zbl

[16] V. V. Volchkov, Vit. V. Volchkov, “Uravneniya svertki na mnogomernykh oblastyakh i redutsirovannoi gruppe Geizenberga”, Matem. sb., 199:8 (2008), 29–60 | MR

[17] C. A. Berenstein, R. Gay, “Le probleme de Pompeiu local”, J. Anal. Math., 52 (1989), 133–166 | DOI | MR | Zbl

[18] A. F. Turbin, N. V. Pratsevityi, Fraktalnye mnozhestva, funktsii, raspredeleniya, Naukova dumka, Kiev, 1992 | MR | Zbl

[19] H. T. Laquer, “The Pompeiu problem”, Amer. Math. Monthly, 100:5 (1993), 461–467 | DOI | MR | Zbl

[20] V. V. Volchkov, “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Matem. zametki, 53:2 (1993), 30–36 | MR | Zbl

[21] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | MR | Zbl

[22] B. G. Korenev, Vvedenie v teoriyu besselevykh funktsii, Fiziko-matematicheskaya biblioteka inzhenera, Nauka, M., 1971 | MR | Zbl

[23] Vit. V. Volchkov, “Lokalnaya teorema o dvukh radiusakh na sfere”, Algebra i analiz, 16:3 (2004), 24–55 | MR | Zbl