The Euler--Kronecker Constant
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider lower bounds for the Euler–Kronecker constant in the case of number fields and upper and lower bounds in the case of algebraic manifolds over a finite field.
Mots-clés : Euler–Kronecker constant, Laurent series
Keywords: number field, algebraic manifold, finite field, zeta function, the generalized Riemann hypothesis, Betti number.
@article{MZM_2010_87_1_a4,
     author = {A. I. Badzyan},
     title = {The {Euler--Kronecker} {Constant}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a4/}
}
TY  - JOUR
AU  - A. I. Badzyan
TI  - The Euler--Kronecker Constant
JO  - Matematičeskie zametki
PY  - 2010
SP  - 35
EP  - 47
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a4/
LA  - ru
ID  - MZM_2010_87_1_a4
ER  - 
%0 Journal Article
%A A. I. Badzyan
%T The Euler--Kronecker Constant
%J Matematičeskie zametki
%D 2010
%P 35-47
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a4/
%G ru
%F MZM_2010_87_1_a4
A. I. Badzyan. The Euler--Kronecker Constant. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a4/

[1] Y. Ihara, “On the Euler–Kronecker constants of global fields and primes with small norms”, Algebraic Geometry and Number Theory, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006, 407–451 | MR | Zbl

[2] Y. Ihara, “The Euler–Kronecker invariants in various families of global fields”, Arithmetic, Geometry and Coding Theory, Proceedings of the International conference AGCT-10 (Marseille, 2005), Semin. Congr., 21, eds. F. Rodier, S. Vladut, Soc. Math. France, Paris, 2006, 25 pp.

[3] S. B. Stechkin, “O nulyakh dzeta-funktsii Rimana”, Matem. zametki, 8:3 (1970), 419–429 | MR | Zbl

[4] D. X. Charles, Sieve Methods, Master's Thesis, Univ. Buffalo (SUNY), Buffalo, NY, 2000