The Euler–Kronecker Constant
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 35-47
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider lower bounds for the Euler–Kronecker constant in the case of number fields and upper and lower bounds in the case of algebraic manifolds over a finite field.
Mots-clés :
Euler–Kronecker constant, Laurent series
Keywords: number field, algebraic manifold, finite field, zeta function, the generalized Riemann hypothesis, Betti number.
Keywords: number field, algebraic manifold, finite field, zeta function, the generalized Riemann hypothesis, Betti number.
@article{MZM_2010_87_1_a4,
author = {A. I. Badzyan},
title = {The {Euler{\textendash}Kronecker} {Constant}},
journal = {Matemati\v{c}eskie zametki},
pages = {35--47},
year = {2010},
volume = {87},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a4/}
}
A. I. Badzyan. The Euler–Kronecker Constant. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 35-47. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a4/
[1] Y. Ihara, “On the Euler–Kronecker constants of global fields and primes with small norms”, Algebraic Geometry and Number Theory, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006, 407–451 | MR | Zbl
[2] Y. Ihara, “The Euler–Kronecker invariants in various families of global fields”, Arithmetic, Geometry and Coding Theory, Proceedings of the International conference AGCT-10 (Marseille, 2005), Semin. Congr., 21, eds. F. Rodier, S. Vladut, Soc. Math. France, Paris, 2006, 25 pp.
[3] S. B. Stechkin, “O nulyakh dzeta-funktsii Rimana”, Matem. zametki, 8:3 (1970), 419–429 | MR | Zbl
[4] D. X. Charles, Sieve Methods, Master's Thesis, Univ. Buffalo (SUNY), Buffalo, NY, 2000