On the Comparison of Distribution Functions of Random Variables
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 17-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a rather general comparison principle for the distribution functions of random variables. As a consequence, we obtain a criterion for the equivalence, in distribution in the vector sense, of an arbitrary sequence of random variables to the Rademacher system; we study the applications of this principle to special cases.
Keywords: distribution function of a random variable, comparison principle, Rademacher system, Banach space, Chebyshev inequality, Peetre $\mathscr K$-functional, Banach couple.
@article{MZM_2010_87_1_a2,
     author = {S. V. Astashkin},
     title = {On the {Comparison} of {Distribution} {Functions} of {Random} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a2/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On the Comparison of Distribution Functions of Random Variables
JO  - Matematičeskie zametki
PY  - 2010
SP  - 17
EP  - 25
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a2/
LA  - ru
ID  - MZM_2010_87_1_a2
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On the Comparison of Distribution Functions of Random Variables
%J Matematičeskie zametki
%D 2010
%P 17-25
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a2/
%G ru
%F MZM_2010_87_1_a2
S. V. Astashkin. On the Comparison of Distribution Functions of Random Variables. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 17-25. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a2/

[1] N. Asmar, S. Montgomery-Smith, “On the distribution of Sidon series”, Ark. Mat., 31:1 (1993), 13–26 | DOI | MR | Zbl

[2] V. H. de la Peña, S. J. Montgomery-Smith, J. Szulga, “Contraction and decoupling inequalities for multilinear forms and $U$-statistics”, Ann. Probab., 22:4 (1994), 1745–1765 | DOI | MR | Zbl

[3] S. J. Dilworth, S. J. Montgomery-Smith, “The distribution of vector-valued Rademacher series”, Ann. Probab., 21:4 (1993), 2046–2052 | DOI | MR | Zbl

[4] G. Pisier, “Les inégalités de Khintchine–Kahane, d'après C. Borell”, Séminaire sur la géométrie des espaces de Banach (1977–1978), École Polytechnique, Palaiseau, 1978, Exp. No. 7, 14 pp | MR | Zbl

[5] A. Pełczyński, “Commensurate sequences of characters”, Proc. Amer. Math. Soc., 104:2 (1988), 525–531 | DOI | MR | Zbl

[6] Zh.-P. Kakhan, Sluchainye funktsionalnye ryady, Mir, M., 1973 | MR | Zbl

[7] S. V. Astashkin, “O vydelenii podsistem, “mazhoriruemykh” sistemoi Rademakhera”, Matem. zametki, 65:4 (1999), 483–495 | MR | Zbl

[8] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR | Zbl

[9] S. V. Astashkin, K. V. Lykov, “Ekstrapolyatsionnoe opisanie prostranstv Lorentsa i Martsinkevicha, “blizkikh” k $L_\infty$”, Sib. matem. zhurn., 47:5 (2006), 974–992 | MR | Zbl

[10] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin, 1979 | MR | Zbl

[11] T. Holmstedt, “Interpolation of quasi-normed spaces”, Math. Scand., 26:1 (1970), 177–199 | MR | Zbl

[12] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland Math. Library, 2, North-Holland Publ., Amsterdam–London, 1972 | MR | Zbl