$\varphi$-Strong Summability of Fourier–Laplace Series of Functions of Class $L(S^{m-1})$
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 144-146
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Fourier–Laplace series, $\varphi$-strong summability, Orlicz space, function of bounded mean oscillation, John–Nirenberg inequality.
Mots-clés : Cesàro mean, Gegenbauer polynomial
Mots-clés : Cesàro mean, Gegenbauer polynomial
@article{MZM_2010_87_1_a17,
author = {R. A. Lasuriya},
title = {$\varphi${-Strong} {Summability} of {Fourier{\textendash}Laplace} {Series} of {Functions} of {Class} $L(S^{m-1})$},
journal = {Matemati\v{c}eskie zametki},
pages = {144--146},
year = {2010},
volume = {87},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a17/}
}
R. A. Lasuriya. $\varphi$-Strong Summability of Fourier–Laplace Series of Functions of Class $L(S^{m-1})$. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 144-146. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a17/
[1] R. A. Lasuriya, Ukr. matem. zhurn., 54:10 (2002), 1437–1439 | MR | Zbl
[2] O. D. Gabisoniya, Matem. zametki, 14:5 (1973), 615–626 | MR | Zbl
[3] L. D. Gogoladze, Matem. sb., 135:2 (1988), 158–168 | MR | Zbl
[4] V. A. Rodin, Anal. Math., 16:4 (1990), 291–302 | DOI | MR | Zbl
[5] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl