Explicit Formula for the Gradient of a Harmonic Function from Its Analytic Cauchy Data on the Analytic Curve
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 141-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: harmonic function, gradient of a harmonic function, Cauchy problem, analytic curve, $2\pi$-periodic function, Grad–Shafranov equation.
Mots-clés : Laplace equation
@article{MZM_2010_87_1_a16,
     author = {A. S. Demidov and D. A. Platuschikhin},
     title = {Explicit {Formula} for the {Gradient} of a {Harmonic} {Function} from {Its} {Analytic} {Cauchy} {Data} on the {Analytic} {Curve}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {141--143},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a16/}
}
TY  - JOUR
AU  - A. S. Demidov
AU  - D. A. Platuschikhin
TI  - Explicit Formula for the Gradient of a Harmonic Function from Its Analytic Cauchy Data on the Analytic Curve
JO  - Matematičeskie zametki
PY  - 2010
SP  - 141
EP  - 143
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a16/
LA  - ru
ID  - MZM_2010_87_1_a16
ER  - 
%0 Journal Article
%A A. S. Demidov
%A D. A. Platuschikhin
%T Explicit Formula for the Gradient of a Harmonic Function from Its Analytic Cauchy Data on the Analytic Curve
%J Matematičeskie zametki
%D 2010
%P 141-143
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a16/
%G ru
%F MZM_2010_87_1_a16
A. S. Demidov; D. A. Platuschikhin. Explicit Formula for the Gradient of a Harmonic Function from Its Analytic Cauchy Data on the Analytic Curve. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 141-143. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a16/

[1] S. N. Mergelyan, UMN, 11:5 (1956), 3–26 | MR | Zbl

[2] M. M. Lavrentev, Izv. AN SSSR. Ser. matem., 20:6 (1956), 819–842 | MR | Zbl

[3] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR | Zbl

[4] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, RKhD, Izhevsk, 2000 | MR | Zbl

[5] A. S. Demidov, M. Moussaoui, Inverse Problems, 20:1 (2004), 137–154 | DOI | MR | Zbl

[6] A. S. Demidov, Dokl. RAN, 346:6 (1996), 732–734 | MR | Zbl

[7] A. S. Demidov, V. V. Petrova, V. M. Silantiev, C. R. Acad. Sci. Paris Sér. I Math., 323:4 (1996), 353–358 | MR | Zbl