On the Symmetry Classification and Conservation Laws for Quasilinear Differential Equations of Second Order
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 122-129
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a sufficient condition for the absence of tangent transformations admitted by quasilinear differential equations of second order and a sufficient condition for the linear autonomy of the operators of the Lie group of transformations admitted by weakly nonlinear differential equations of second order. We prove a theorem concerning the structure of conservation laws of first order for weakly nonlinear differential equations of second order. We carry out the classification by first-order conservation laws for linear differential equations of second order with two independent variables.
Keywords:
quasilinear (weakly nonlinear) differential equation of second order, conservation laws for differential equations
Mots-clés : tangent transformation, Lie group, Euler–Poisson equation, Laplace transform.
Mots-clés : tangent transformation, Lie group, Euler–Poisson equation, Laplace transform.
@article{MZM_2010_87_1_a12,
author = {Yu. A. Chirkunov},
title = {On the {Symmetry} {Classification} and {Conservation} {Laws} for {Quasilinear} {Differential} {Equations} of {Second} {Order}},
journal = {Matemati\v{c}eskie zametki},
pages = {122--129},
publisher = {mathdoc},
volume = {87},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a12/}
}
TY - JOUR AU - Yu. A. Chirkunov TI - On the Symmetry Classification and Conservation Laws for Quasilinear Differential Equations of Second Order JO - Matematičeskie zametki PY - 2010 SP - 122 EP - 129 VL - 87 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a12/ LA - ru ID - MZM_2010_87_1_a12 ER -
Yu. A. Chirkunov. On the Symmetry Classification and Conservation Laws for Quasilinear Differential Equations of Second Order. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 122-129. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a12/