Best Approximations of Periodic Functions of Several Variables from the Classes $B^\Omega_{p,\theta}$
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 108-121

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain order-sharp estimates of best approximation for the classes $B^\Omega_{p,\theta}$ of periodic functions of several variables by trigonometric polynomials whose spectra are generated by the level surfaces of the function $\Omega(t)$.
Keywords: periodic function of several variables, trigonometric polynomial, level surface, Bari–Stechkin condition, modulus of continuity, Hölder'd inequality.
Mots-clés : Vallée-Poussin kernel
@article{MZM_2010_87_1_a11,
     author = {S. A. Stasyuk},
     title = {Best {Approximations} of {Periodic} {Functions} of {Several} {Variables} from the {Classes} $B^\Omega_{p,\theta}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {108--121},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a11/}
}
TY  - JOUR
AU  - S. A. Stasyuk
TI  - Best Approximations of Periodic Functions of Several Variables from the Classes $B^\Omega_{p,\theta}$
JO  - Matematičeskie zametki
PY  - 2010
SP  - 108
EP  - 121
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a11/
LA  - ru
ID  - MZM_2010_87_1_a11
ER  - 
%0 Journal Article
%A S. A. Stasyuk
%T Best Approximations of Periodic Functions of Several Variables from the Classes $B^\Omega_{p,\theta}$
%J Matematičeskie zametki
%D 2010
%P 108-121
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a11/
%G ru
%F MZM_2010_87_1_a11
S. A. Stasyuk. Best Approximations of Periodic Functions of Several Variables from the Classes $B^\Omega_{p,\theta}$. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 108-121. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a11/