Bounds for Joint Spectral Radii of a Set of Nonnegative Matrices
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 13-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bounds for joint spectral radii of a set of nonnegative matrices are established by using the apparatus of idempotent algebra.
Keywords: idempotent semiring, idempotent algebra, idempotent semifield, upper and lower joint spectral radius, spectral max-radius.
@article{MZM_2010_87_1_a1,
     author = {Yu. A. Alpin},
     title = {Bounds for {Joint} {Spectral} {Radii} of a {Set} of {Nonnegative} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {13--16},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a1/}
}
TY  - JOUR
AU  - Yu. A. Alpin
TI  - Bounds for Joint Spectral Radii of a Set of Nonnegative Matrices
JO  - Matematičeskie zametki
PY  - 2010
SP  - 13
EP  - 16
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a1/
LA  - ru
ID  - MZM_2010_87_1_a1
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%T Bounds for Joint Spectral Radii of a Set of Nonnegative Matrices
%J Matematičeskie zametki
%D 2010
%P 13-16
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a1/
%G ru
%F MZM_2010_87_1_a1
Yu. A. Alpin. Bounds for Joint Spectral Radii of a Set of Nonnegative Matrices. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 13-16. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a1/

[1] Yu. A. Alpin, “Granitsy dlya perronova kornya neotritsatelnoi matritsy, uchityvayuschie svoistva ee grafa”, Matem. zametki, 58:4 (1995), 635–637 | MR | Zbl

[2] L. Elsner, P. van den Driessche, “Bounds for the Perron root using max eigenvalues”, Linear Algebra Appl., 428:8–9 (2008), 2000–2005 | DOI | MR | Zbl

[3] Yu. A. Alpin, L. Yu. Kolotilina, N. N. Korneeva, “Sovmestnye otsenki dlya perronovskikh kornei neotritsatelnykh matrits i ikh prilozheniya”, Chislennye metody i voprosy organizatsii vychislenii. XIX, Zap. nauchn. sem. POMI, 334, POMI, SPb., 2006, 30–56 | MR | Zbl

[4] V. Yu. Protasov, “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundament. i prikl. matem., 2:1 (1996), 205–231 | MR | Zbl

[5] V. Yu. Protasov, “O gladkosti krivykh de Rama”, Izv. RAN. Ser. matem., 68:3 (2004), 139–180 | MR | Zbl

[6] V. Yu. Protasov, “Asimptotika funktsii razbieniya”, Matem. sb., 191:3 (2000), 65–98 | MR | Zbl

[7] A. Peperko, “On the max version of the generalized spectral radius theorem”, Linear Algebra Appl., 428:10 (2008), 2312–2318 | DOI | MR | Zbl

[8] S. Gaubert, Max Plus, Methods and Applications of $(\max,+)$ Linear Algebra, Rapport de recherche No 3088, INRIA, Cedex, 24 pp.