Ranks of Homotopy Groups of Homogeneous Spaces
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 912-924.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple way to evaluate the ranks of homotopy groups $\pi_j(M)$ is indicated for homogeneous spaces of the form $M=G/H$, where $G$ is a compact connected Lie group and $H$ is a connected regular subgroup or a subgroup of maximal rank in $G$. A classification of the spaces whose Onishchik ranks are equal to 3 is obtained. The transitive actions on the products of homogeneous spaces of the form $G/H$ are also described, where $G$ and $H$ are simple and $H$ is a subgroup of corank 1 in $G$ and the defect of the space $G/H$ is equal to 1.
Keywords: compact connected Lie group, homogeneous space, regular subgroup, rank of a group, Onishchik rank, Euler characteristic, semisimple group.
Mots-clés : homotopy group
@article{MZM_2009_86_6_a9,
     author = {A. N. Shchetinin},
     title = {Ranks of {Homotopy} {Groups} of {Homogeneous} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {912--924},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a9/}
}
TY  - JOUR
AU  - A. N. Shchetinin
TI  - Ranks of Homotopy Groups of Homogeneous Spaces
JO  - Matematičeskie zametki
PY  - 2009
SP  - 912
EP  - 924
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a9/
LA  - ru
ID  - MZM_2009_86_6_a9
ER  - 
%0 Journal Article
%A A. N. Shchetinin
%T Ranks of Homotopy Groups of Homogeneous Spaces
%J Matematičeskie zametki
%D 2009
%P 912-924
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a9/
%G ru
%F MZM_2009_86_6_a9
A. N. Shchetinin. Ranks of Homotopy Groups of Homogeneous Spaces. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 912-924. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a9/

[1] A. L. Onischik, Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995 | MR | Zbl

[2] V. G. Mkhitaryan, “Nekotorye odnorodnye prostranstva osobykh grupp Li”, Voprosy teorii grupp i gomologicheskoi algebry, YarGU, Yaroslavl, 1985, 116–121 | MR | Zbl

[3] E. B. Dynkin, “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30:2 (1952), 349–462 | MR | Zbl

[4] Doan Kuin, “Polinomy Puankare kompaktnykh odnorodnykh rimanovykh prostranstv s neprivodimoi statsionarnoi gruppoi”, Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, Vyp. 14, Izd-vo MGU, M., 1968, 33–93 | MR | Zbl

[5] A. N. Schetinin, “O faktorprostranstvakh kompaktnykh grupp Li po tsentralizatoram torov”, Matem. zametki, 82:2 (2007), 293–304 | MR

[6] E. B. Dynkin, “Topologicheskie kharakteristiki gomomorfizmov kompaktnykh grupp Li”, Matem. sb., 35:1 (1954), 129–173 | MR | Zbl

[7] E. B. Dynkin, A. L. Onischik, “Kompaktnye gruppy Li v tselom”, UMN, 10:4 (1955), 3–74 | MR | Zbl

[8] V. G. Mkhitaryan, “Podalgebry koranga 1 kompaktnykh algebr Li”, Voprosy teorii grupp i gomologicheskoi algebry, YarGU, Yaroslavl, 1982, 119–126 | MR | Zbl

[9] A. L. Onischik, “O topologii nekotorykh kompleksnykh odnorodnykh prostranstv”, Mnogomernyi kompleksnyi analiz, In-t fiziki SO AN SSSR, Krasnoyarsk, 1985, 109–121 | MR | Zbl

[10] I. N. Bernshtein, I. M. Gelfand, S. I. Gelfand, “Kletki Shuberta i kogomologii prostranstv $G/P$”, UMN, 28:3 (1973), 3–26 | MR | Zbl