Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_6_a8, author = {P. Yu. Tarasenko}, title = {The {Limit} of {Measures} {Generated} by {Diffusions} with {Unboundedly} {Increasing} {Drift}}, journal = {Matemati\v{c}eskie zametki}, pages = {903--911}, publisher = {mathdoc}, volume = {86}, number = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a8/} }
P. Yu. Tarasenko. The Limit of Measures Generated by Diffusions with Unboundedly Increasing Drift. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 903-911. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a8/
[1] B. K. Driver, A Primer on Riemannian Geometry and Stochastic Analysis on Path Spaces, Preprint, Univ. of California, San Diego, CA, 2003, 60 pp.
[2] O. G. Smolyanov, Kh. fon Vaitszekker, O. Vittikh, “Poverkhnostnye mery i nachalno-kraevye zadachi, porozhdaemye diffuziyami so snosom”, Dokl. RAN, 415:6 (2007), 737–741 | MR | Zbl
[3] N. A. Sidorova, O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, “The surface limit of Brownian motion in tubular neighborhoods of an embedded Riemannian manifold”, J. Funct. Anal., 206:2 (2004), 391–413 | DOI | MR | Zbl
[4] L. C. G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 2. Itô Calculus, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[5] H. v. Weizsäcker, G. Winkler, Stochastic Integrals. An Introduction, Adv. Lectures Math., Friedrich Vieweg Sohn, Braunschweig, 1990 | MR | Zbl