The Limit of Measures Generated by Diffusions with Unboundedly Increasing Drift
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 903-911.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a sequence of diffusion processes in $\mathbb R^n$ that are Brownian motions with drift unboundedly increasing in modulus and directed to a manifold converges in distribution to the Brownian motion on the manifold.
Keywords: Brownian motion, unboundedly increasing drift, Riemannian manifold, Lipschitz condition, Laplace–Beltrami operator, semimartingale, Itô differential.
@article{MZM_2009_86_6_a8,
     author = {P. Yu. Tarasenko},
     title = {The {Limit} of {Measures} {Generated} by {Diffusions} with {Unboundedly} {Increasing} {Drift}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {903--911},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a8/}
}
TY  - JOUR
AU  - P. Yu. Tarasenko
TI  - The Limit of Measures Generated by Diffusions with Unboundedly Increasing Drift
JO  - Matematičeskie zametki
PY  - 2009
SP  - 903
EP  - 911
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a8/
LA  - ru
ID  - MZM_2009_86_6_a8
ER  - 
%0 Journal Article
%A P. Yu. Tarasenko
%T The Limit of Measures Generated by Diffusions with Unboundedly Increasing Drift
%J Matematičeskie zametki
%D 2009
%P 903-911
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a8/
%G ru
%F MZM_2009_86_6_a8
P. Yu. Tarasenko. The Limit of Measures Generated by Diffusions with Unboundedly Increasing Drift. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 903-911. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a8/

[1] B. K. Driver, A Primer on Riemannian Geometry and Stochastic Analysis on Path Spaces, Preprint, Univ. of California, San Diego, CA, 2003, 60 pp.

[2] O. G. Smolyanov, Kh. fon Vaitszekker, O. Vittikh, “Poverkhnostnye mery i nachalno-kraevye zadachi, porozhdaemye diffuziyami so snosom”, Dokl. RAN, 415:6 (2007), 737–741 | MR | Zbl

[3] N. A. Sidorova, O. G. Smolyanov, H. v. Weizsäcker, O. Wittich, “The surface limit of Brownian motion in tubular neighborhoods of an embedded Riemannian manifold”, J. Funct. Anal., 206:2 (2004), 391–413 | DOI | MR | Zbl

[4] L. C. G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 2. Itô Calculus, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[5] H. v. Weizsäcker, G. Winkler, Stochastic Integrals. An Introduction, Adv. Lectures Math., Friedrich Vieweg Sohn, Braunschweig, 1990 | MR | Zbl