Hardy's Inequality with Measures: The Case $0$
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 870-883.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain criteria for the validity of Hardy's inequality with three countably finite measures on the number line for the case $0$.
Keywords: Hardy's inequality with measures, $\sigma$-algebra, Borel subset, $\sigma$-finite measure, Hölder's inequality, Jensen's inequality, discrete measure, Radon–Nikodym derivative.
Mots-clés : Lebesgue measure
@article{MZM_2009_86_6_a5,
     author = {D. V. Prokhorov},
     title = {Hardy's {Inequality} with {Measures:} {The} {Case} $0<p<1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {870--883},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a5/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - Hardy's Inequality with Measures: The Case $0
JO  - Matematičeskie zametki
PY  - 2009
SP  - 870
EP  - 883
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a5/
LA  - ru
ID  - MZM_2009_86_6_a5
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T Hardy's Inequality with Measures: The Case $0
%J Matematičeskie zametki
%D 2009
%P 870-883
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a5/
%G ru
%F MZM_2009_86_6_a5
D. V. Prokhorov. Hardy's Inequality with Measures: The Case $0
                  
                

[1] B. Opic, A. Kufner, Hardy-Type Inequalities, Pitman Res. Notes Math. Ser., 219, Longman Sci. Tech., Harlow, 1990 | MR | Zbl

[2] A. Kufner, L.-E. Persson, Weighted Inequalities of Hardy Type, World Sci. Publ., River Edge, NJ, 2003 | MR | Zbl

[3] D. V. Prokhorov, “Neravenstvo Khardi s tremya merami”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, M., 2006, 233–245 | MR

[4] R. Oinarov, “Dvustoronnie otsenki normy nekotorykh klassov integralnykh operatorov”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 16, Tr. MIAN, 204, Nauka, M., 1993, 240–250 | MR | Zbl

[5] S. Bloom, R. Kerman, “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113:1 (1991), 135–141 | DOI | MR | Zbl

[6] V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. (2), 50:1 (1994), 105–120 | MR | Zbl

[7] D. V. Prokhorov, “Inequalities of Hardy type for a class of integral operators with measures”, Anal. Math., 33:3 (2007), 199–225 | DOI | MR | Zbl

[8] G. Bennett, “Some elementary inequalities. III”, Quart. J. Math. Oxford Ser. (2), 42:166 (1991), 149–174 | DOI | MR | Zbl

[9] M. L. Goldman, Hardy Type Inequalities on the Cone of Quasimonotone Functions, Research Report No 98/31, Computing Centre FEB RAS, Khabarovsk, 1998, 69 pp.

[10] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987 | MR | Zbl