Expansion in the System of Shifts of a B-Spline
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 859-869.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of approximating functions by linear combinations of shifts of a fixed function, a B-spline of the first, second, or third degree, is proposed. This method is exact for the classes of splines of the corresponding degree with deficiency 1. We obtain estimates of strong type for the norms of approximating operators in certain spaces, from which it follows immediately that the approximation in these spaces coincides in order with the best approximation by splines.
Keywords: spline, B-spline, periodic spline, system of shifts of a B-spline, deficiency of a spline, Hölder's inequality, Jensen's inequality.
@article{MZM_2009_86_6_a4,
     author = {S. M. Lytkin},
     title = {Expansion in the {System} of {Shifts} of a {B-Spline}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {859--869},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a4/}
}
TY  - JOUR
AU  - S. M. Lytkin
TI  - Expansion in the System of Shifts of a B-Spline
JO  - Matematičeskie zametki
PY  - 2009
SP  - 859
EP  - 869
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a4/
LA  - ru
ID  - MZM_2009_86_6_a4
ER  - 
%0 Journal Article
%A S. M. Lytkin
%T Expansion in the System of Shifts of a B-Spline
%J Matematičeskie zametki
%D 2009
%P 859-869
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a4/
%G ru
%F MZM_2009_86_6_a4
S. M. Lytkin. Expansion in the System of Shifts of a B-Spline. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 859-869. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a4/

[1] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[2] T. P. Lukashenko, “O novykh sistemakh razlozheniya i ikh svoistvakh”, Chebyshevskii sb., 5:2 (2004), 66–82 | MR | Zbl

[3] Yu. S. Zavyalov, B. S. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR | Zbl

[4] N. P. Korneichuk, Splainy v teorii priblizheniya, Nauka, M., 1984 | MR | Zbl

[5] A. I. Grebennikov, “Ob odnom metode postroeniya interpolyatsionnykh kubicheskikh i bikubicheskikh splainov na ravnomernykh setkakh”, Vestn. Mosk. un-ta. Ser. 15. Vychislit. matem., kibernet., 1978, no. 4, 12–17 | MR | Zbl

[6] T. Lyche, L. L. Schumaker, “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[7] C. de Boor, G. J. Fix, “Spline approximation by quasiinterpolants”, J. Approx. Theory, 8:1 (1973), 19–45 | DOI | MR | Zbl

[8] Yu. N. Subbotin, “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Priblizhenie funktsii i operatorov, Tr. MIAN, 138, Nauka, M., 1975, 118–173 | MR | Zbl