On Compact Perturbations of the Limit-Periodic Jacobi Operator
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 845-858.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a bounded Jacobi operator acting in the space $l^2(\mathbb N)$. We supplement the spectral measure of this operator by a set of finitely many discrete masses (on the real axis outside the convex hull of the support of the operator's spectral measure). In the present paper, we study whether the obtained perturbation of the original operator is compact. For limit-periodic Jacobi operators, we obtain a necessary and sufficient condition on the location of the masses for the perturbation to be compact.
Mots-clés : compact perturbations
Keywords: Jacobi operator, spectral measure, discrete masses, the space $\ell^2(\mathbb N)$, finite-zone operator, harmonic function.
@article{MZM_2009_86_6_a3,
     author = {V. A. Kalyagin and A. A. Kononova},
     title = {On {Compact} {Perturbations} of the {Limit-Periodic} {Jacobi} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {845--858},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a3/}
}
TY  - JOUR
AU  - V. A. Kalyagin
AU  - A. A. Kononova
TI  - On Compact Perturbations of the Limit-Periodic Jacobi Operator
JO  - Matematičeskie zametki
PY  - 2009
SP  - 845
EP  - 858
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a3/
LA  - ru
ID  - MZM_2009_86_6_a3
ER  - 
%0 Journal Article
%A V. A. Kalyagin
%A A. A. Kononova
%T On Compact Perturbations of the Limit-Periodic Jacobi Operator
%J Matematičeskie zametki
%D 2009
%P 845-858
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a3/
%G ru
%F MZM_2009_86_6_a3
V. A. Kalyagin; A. A. Kononova. On Compact Perturbations of the Limit-Periodic Jacobi Operator. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 845-858. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a3/

[1] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR | Zbl

[2] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[3] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., 132, Springer-Verlag, Berlin, 1966 | MR | Zbl

[4] A. A. Gonchar, “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97:4 (1975), 607–629 | MR | Zbl

[5] E. M. Nikishin, “Diskretnyi operator Shturma–Liuvillya i nekotorye zadachi teorii funktsii”, Tr. sem. im. I. G. Petrovskogo, 10, M., Izd-vo MGU, 1984, 3–77 | MR | Zbl

[6] F. Marcellán, P. Maroni, “Sur l'adjoinction d'une masse de Dirac à une forme régulière et semi-classique”, Ann. Mat. Pura Appl. (4), 162:1 (1992), 1–22 | DOI | MR | Zbl

[7] D. Damanik, R. Killip, B. Simon, Perturbations of Orthogonal Polynomials with Periodic Recursion Coefficients, arXiv: math.SP/0702388v2

[8] E. A. Rakhmanov, “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov”, Matem. sb., 103:2 (1977), 237–252 ; “Об асимптотике отношения ортогональных многочленов. II”, Матем. сб., 118:1 (1982), 104–117 | MR | Zbl | MR | Zbl

[9] S. P. Suetin, “O formulakh sledov dlya nekotorogo klassa operatorov Yakobi”, Matem. sb., 198:6 (2007), 107–138 | MR | Zbl

[10] V. Batchenko, F. Gesztesy, “On the spectrum of Jacobi operators with quasiperiodic algebro-geometric coefficients”, IMRP Int. Math. Res. Pap., 10 (2005), 511–563 | DOI | MR | Zbl

[11] B. Beckermann, “Complex Jacobi matrices”, J. Comput. Appl. Math., 127:1–2 (2001), 17–65 | DOI | MR | Zbl

[12] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Adv. in Math., 3:2 (1969), 127–232 | DOI | MR | Zbl

[13] A. I. Aptekarev, “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125:2 (1984), 231–258 | MR | Zbl

[14] V. A. Kalyagin, A. A. Kononova, “Ob asimptotike mnogochlenov, ortogonalnykh na sisteme dug, po mere, imeyuschei diskretnuyu chast”, Algebra i analiz, 21:2 (2009), 71–91

[15] A. A. Gonchar, S. P. Suetin, “Ob approksimatsiyakh Pade meromorfnykh funktsii markovskogo tipa”, Sovr. probl. matem., 5, MIAN, M., 2004, 3–67 | DOI | MR | Zbl

[16] E. A. Rakhmanov, “O skhodimosti diagonalnykh approksimatsii Pade”, Matem. sb., 104:2 (1977), 271–291 | MR | Zbl