Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_6_a2, author = {I. A. Ivanishko and V. G. Krotov}, title = {Compactness of {Embeddings} of {Sobolev} {Type} on {Metric} {Measure} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {829--844}, publisher = {mathdoc}, volume = {86}, number = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/} }
I. A. Ivanishko; V. G. Krotov. Compactness of Embeddings of Sobolev Type on Metric Measure Spaces. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 829-844. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/
[1] R. R. Coifman, G. Weiss, Analyse Harmonique non-commutative sur certains espaces homogénes. Étude de certaines intégrales singulières, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl
[2] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, Berlin, 2001 | MR | Zbl
[3] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 563–582 | MR | Zbl
[4] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Math., 62:1 (1978), 75–92 | MR | Zbl
[5] R. A. DeVore, R. C. Sharpley, Maximal Functions Measuring Smoothness, Mem. Amer. Math. Soc., 47, no. 293, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl
[6] V. I. Kolyada, “Otsenki maksimalnykh funktsii, svyazannykh s lokalnoi gladkostyu”, Dokl. AN SSSR, 293:3 (1987), 534–537 | MR | Zbl
[7] V. I. Kolyada, “Estimates of maximal functions measuring local smoothness”, Anal. Math., 25:4 (1999), 277–300 | DOI | MR | Zbl
[8] K. I. Oskolkov, “Approksimativnye svoistva summiruemykh funktsii na mnozhestvakh polnoi mery”, Matem. sb., 103:4 (1977), 563–589 | MR | Zbl
[9] P. Hajłasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl
[10] I. A. Ivanishko, “Otsenki maksimalnykh funktsii Kalderona–Kolyady na prostranstvakh odnorodnogo tipa”, Tr. in-ta matem. NAN Belarusi, 12:1 (2004), 64–67
[11] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Universitetskaya seriya, 9, Nauchnaya kniga, Novosibirsk, 2002 | MR | Zbl
[12] E. Lib, M. Loss, Analiz, Universitetskaya seriya, 1, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl
[13] A. Jonsson, “Haar wavelets of higher order on fractals and regularity of functions”, J. Math. Anal. Appl., 290:1 (2004), 86–104 | DOI | MR | Zbl
[14] A. Kałamajska, “On compactness of embedding for Sobolev spaces defined on metric spaces”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 123–132 | MR | Zbl
[15] V. I. Kolyada, Teoremy vlozheniya i metricheskie svoistva funktsii, Dis. $\dots$ dokt. fiz.-matem. nauk, Odessa, OGU, 1986
[16] I. A. Ivanishko, “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matem. zametki, 77:6 (2005), 937–941 | MR | Zbl
[17] D. Yang, “New characterizations of Hajłasz–Sobolev spaces on metric spaces”, Sci. China Ser. A, 46:5 (2003), 675–689 | MR | Zbl
[18] V. G. Krotov, “Vesovye $L^p$-neravenstva dlya sharp-maksimalnykh funktsii”, Dokl. RAN, 404:2 (2005), 155–158 | MR | Zbl
[19] V. G. Krotov, “Vesovye $L^p$-neravenstva dlya sharp-maksimalnykh funktsii na metricheskikh prostranstvakh s meroi”, Izv. NAN Armenii. Ser. matem., 41:2 (2006), 25–42 | MR
[20] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl
[21] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[22] H. Triebel, Theory of Function Spaces. III, Monogr. Math., 100, Birkhäuser-Verlag, Basel, 2006 | MR | Zbl