Compactness of Embeddings of Sobolev Type on Metric Measure Spaces
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 829-844.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions for the compactness of embeddings for some classes of functions on metric space with measure satisfying the duplication condition. These classes are defined in terms of the $L^p$-summability of maximal functions measuring local smoothness.
Keywords: embedding of Sobolev type, metric measure space, Hardy–Littlewood maximal function, Hölder class, Sobolev space, Borel measure
Mots-clés : Lebesgue measure.
@article{MZM_2009_86_6_a2,
     author = {I. A. Ivanishko and V. G. Krotov},
     title = {Compactness of {Embeddings} of {Sobolev} {Type} on {Metric} {Measure} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {829--844},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/}
}
TY  - JOUR
AU  - I. A. Ivanishko
AU  - V. G. Krotov
TI  - Compactness of Embeddings of Sobolev Type on Metric Measure Spaces
JO  - Matematičeskie zametki
PY  - 2009
SP  - 829
EP  - 844
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/
LA  - ru
ID  - MZM_2009_86_6_a2
ER  - 
%0 Journal Article
%A I. A. Ivanishko
%A V. G. Krotov
%T Compactness of Embeddings of Sobolev Type on Metric Measure Spaces
%J Matematičeskie zametki
%D 2009
%P 829-844
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/
%G ru
%F MZM_2009_86_6_a2
I. A. Ivanishko; V. G. Krotov. Compactness of Embeddings of Sobolev Type on Metric Measure Spaces. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 829-844. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/

[1] R. R. Coifman, G. Weiss, Analyse Harmonique non-commutative sur certains espaces homogénes. Étude de certaines intégrales singulières, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[2] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, Berlin, 2001 | MR | Zbl

[3] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 563–582 | MR | Zbl

[4] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Math., 62:1 (1978), 75–92 | MR | Zbl

[5] R. A. DeVore, R. C. Sharpley, Maximal Functions Measuring Smoothness, Mem. Amer. Math. Soc., 47, no. 293, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl

[6] V. I. Kolyada, “Otsenki maksimalnykh funktsii, svyazannykh s lokalnoi gladkostyu”, Dokl. AN SSSR, 293:3 (1987), 534–537 | MR | Zbl

[7] V. I. Kolyada, “Estimates of maximal functions measuring local smoothness”, Anal. Math., 25:4 (1999), 277–300 | DOI | MR | Zbl

[8] K. I. Oskolkov, “Approksimativnye svoistva summiruemykh funktsii na mnozhestvakh polnoi mery”, Matem. sb., 103:4 (1977), 563–589 | MR | Zbl

[9] P. Hajłasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl

[10] I. A. Ivanishko, “Otsenki maksimalnykh funktsii Kalderona–Kolyady na prostranstvakh odnorodnogo tipa”, Tr. in-ta matem. NAN Belarusi, 12:1 (2004), 64–67

[11] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Universitetskaya seriya, 9, Nauchnaya kniga, Novosibirsk, 2002 | MR | Zbl

[12] E. Lib, M. Loss, Analiz, Universitetskaya seriya, 1, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[13] A. Jonsson, “Haar wavelets of higher order on fractals and regularity of functions”, J. Math. Anal. Appl., 290:1 (2004), 86–104 | DOI | MR | Zbl

[14] A. Kałamajska, “On compactness of embedding for Sobolev spaces defined on metric spaces”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 123–132 | MR | Zbl

[15] V. I. Kolyada, Teoremy vlozheniya i metricheskie svoistva funktsii, Dis. $\dots$ dokt. fiz.-matem. nauk, Odessa, OGU, 1986

[16] I. A. Ivanishko, “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matem. zametki, 77:6 (2005), 937–941 | MR | Zbl

[17] D. Yang, “New characterizations of Hajłasz–Sobolev spaces on metric spaces”, Sci. China Ser. A, 46:5 (2003), 675–689 | MR | Zbl

[18] V. G. Krotov, “Vesovye $L^p$-neravenstva dlya sharp-maksimalnykh funktsii”, Dokl. RAN, 404:2 (2005), 155–158 | MR | Zbl

[19] V. G. Krotov, “Vesovye $L^p$-neravenstva dlya sharp-maksimalnykh funktsii na metricheskikh prostranstvakh s meroi”, Izv. NAN Armenii. Ser. matem., 41:2 (2006), 25–42 | MR

[20] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[21] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[22] H. Triebel, Theory of Function Spaces. III, Monogr. Math., 100, Birkhäuser-Verlag, Basel, 2006 | MR | Zbl