Compactness of Embeddings of Sobolev Type on Metric Measure Spaces
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 829-844 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish conditions for the compactness of embeddings for some classes of functions on metric space with measure satisfying the duplication condition. These classes are defined in terms of the $L^p$-summability of maximal functions measuring local smoothness.
Keywords: embedding of Sobolev type, metric measure space, Hardy–Littlewood maximal function, Sobolev space, Borel measure
Mots-clés : Hölder class, Lebesgue measure.
@article{MZM_2009_86_6_a2,
     author = {I. A. Ivanishko and V. G. Krotov},
     title = {Compactness of {Embeddings} of {Sobolev} {Type} on {Metric} {Measure} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {829--844},
     year = {2009},
     volume = {86},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/}
}
TY  - JOUR
AU  - I. A. Ivanishko
AU  - V. G. Krotov
TI  - Compactness of Embeddings of Sobolev Type on Metric Measure Spaces
JO  - Matematičeskie zametki
PY  - 2009
SP  - 829
EP  - 844
VL  - 86
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/
LA  - ru
ID  - MZM_2009_86_6_a2
ER  - 
%0 Journal Article
%A I. A. Ivanishko
%A V. G. Krotov
%T Compactness of Embeddings of Sobolev Type on Metric Measure Spaces
%J Matematičeskie zametki
%D 2009
%P 829-844
%V 86
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/
%G ru
%F MZM_2009_86_6_a2
I. A. Ivanishko; V. G. Krotov. Compactness of Embeddings of Sobolev Type on Metric Measure Spaces. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 829-844. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a2/

[1] R. R. Coifman, G. Weiss, Analyse Harmonique non-commutative sur certains espaces homogénes. Étude de certaines intégrales singulières, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[2] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, Berlin, 2001 | MR | Zbl

[3] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 563–582 | MR | Zbl

[4] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Math., 62:1 (1978), 75–92 | MR | Zbl

[5] R. A. DeVore, R. C. Sharpley, Maximal Functions Measuring Smoothness, Mem. Amer. Math. Soc., 47, no. 293, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl

[6] V. I. Kolyada, “Otsenki maksimalnykh funktsii, svyazannykh s lokalnoi gladkostyu”, Dokl. AN SSSR, 293:3 (1987), 534–537 | MR | Zbl

[7] V. I. Kolyada, “Estimates of maximal functions measuring local smoothness”, Anal. Math., 25:4 (1999), 277–300 | DOI | MR | Zbl

[8] K. I. Oskolkov, “Approksimativnye svoistva summiruemykh funktsii na mnozhestvakh polnoi mery”, Matem. sb., 103:4 (1977), 563–589 | MR | Zbl

[9] P. Hajłasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl

[10] I. A. Ivanishko, “Otsenki maksimalnykh funktsii Kalderona–Kolyady na prostranstvakh odnorodnogo tipa”, Tr. in-ta matem. NAN Belarusi, 12:1 (2004), 64–67

[11] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Universitetskaya seriya, 9, Nauchnaya kniga, Novosibirsk, 2002 | MR | Zbl

[12] E. Lib, M. Loss, Analiz, Universitetskaya seriya, 1, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[13] A. Jonsson, “Haar wavelets of higher order on fractals and regularity of functions”, J. Math. Anal. Appl., 290:1 (2004), 86–104 | DOI | MR | Zbl

[14] A. Kałamajska, “On compactness of embedding for Sobolev spaces defined on metric spaces”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 123–132 | MR | Zbl

[15] V. I. Kolyada, Teoremy vlozheniya i metricheskie svoistva funktsii, Dis. $\dots$ dokt. fiz.-matem. nauk, Odessa, OGU, 1986

[16] I. A. Ivanishko, “Obobschennye klassy Soboleva na metricheskikh prostranstvakh s meroi”, Matem. zametki, 77:6 (2005), 937–941 | MR | Zbl

[17] D. Yang, “New characterizations of Hajłasz–Sobolev spaces on metric spaces”, Sci. China Ser. A, 46:5 (2003), 675–689 | MR | Zbl

[18] V. G. Krotov, “Vesovye $L^p$-neravenstva dlya sharp-maksimalnykh funktsii”, Dokl. RAN, 404:2 (2005), 155–158 | MR | Zbl

[19] V. G. Krotov, “Vesovye $L^p$-neravenstva dlya sharp-maksimalnykh funktsii na metricheskikh prostranstvakh s meroi”, Izv. NAN Armenii. Ser. matem., 41:2 (2006), 25–42 | MR

[20] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[21] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[22] H. Triebel, Theory of Function Spaces. III, Monogr. Math., 100, Birkhäuser-Verlag, Basel, 2006 | MR | Zbl