Algebraic Cones
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 947-949
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
algebraic cone, monoid action, action with unique fixed point, algebra automorphism, stable ideal, irreducible algebraic manifold.
Mots-clés : group action, orbit
Mots-clés : group action, orbit
@article{MZM_2009_86_6_a13,
author = {V. L. Popov},
title = {Algebraic {Cones}},
journal = {Matemati\v{c}eskie zametki},
pages = {947--949},
year = {2009},
volume = {86},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a13/}
}
V. L. Popov. Algebraic Cones. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 947-949. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a13/
[1] D. Mumford, J. Fogarty, Geometric Invariant Theory, Ergeb. Math. Grenzgeb., 34, Springer-Verlag, Berlin, 1982 | MR | Zbl
[2] A. Borel, Linear Algebraic Groups, Grad. Texts in Math., 126, Springer-Verlag, New York, 1991 | MR | Zbl
[3] E. B. Vinberg, V. L. Popov, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 137–309 | MR | Zbl
[4] A. Grothendieck, Classification de groupes de Lie algébriques, Séminaire Claude Chevalley, 1956–1958, 1, Secrétariat mathématique, Paris, 1958, Exposé no. 5, 19 pp | MR | Zbl
[5] H. Sumihiro, J. Math. Kyoto Univ., 14 (1974), 1–28 | MR | Zbl
[6] V. L. Popov, Matem. zametki, 23:2 (1978), 183–195 | MR | Zbl