Multiparameter Perturbation Theory of Fredholm Operators Applied to Bloch Functions
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 819-828.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, a family of linear Fredholm operators depending on several parameters is considered. We implement a general approach, which allows us to reduce the problem of finding the set $\Lambda$ of parameters $t=(t_1,\dots,t_n)$ for which the equation $A(t)u=0$ has a nonzero solution to a finite-dimensional case. This allows us to obtain perturbation theory formulas for simple and conic points of the set $\Lambda$ by using the ordinary implicit function theorems. These formulas are applied to the existence problem for the conic points of the eigenvalue set $E(k)$ in the space of Bloch functions of the two-dimensional Schrödinger operator with a periodic potential with respect to a hexagonal lattice.
Keywords: multiparameter perturbation theory, Fredholm operator, Bloch function, two-dimensional Schrödinger operator, Hilbert space, analytic function.
Mots-clés : hexagonal lattice
@article{MZM_2009_86_6_a1,
     author = {V. V. Grushin},
     title = {Multiparameter {Perturbation} {Theory} of {Fredholm} {Operators} {Applied} to {Bloch} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {819--828},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a1/}
}
TY  - JOUR
AU  - V. V. Grushin
TI  - Multiparameter Perturbation Theory of Fredholm Operators Applied to Bloch Functions
JO  - Matematičeskie zametki
PY  - 2009
SP  - 819
EP  - 828
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a1/
LA  - ru
ID  - MZM_2009_86_6_a1
ER  - 
%0 Journal Article
%A V. V. Grushin
%T Multiparameter Perturbation Theory of Fredholm Operators Applied to Bloch Functions
%J Matematičeskie zametki
%D 2009
%P 819-828
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a1/
%G ru
%F MZM_2009_86_6_a1
V. V. Grushin. Multiparameter Perturbation Theory of Fredholm Operators Applied to Bloch Functions. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 819-828. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a1/

[1] I. Ts. Gokhberg, M. G. Krein, “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, UMN, 12:2 (1957), 43–118 | MR | Zbl

[2] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR | Zbl

[3] V. V. Grushin, “Ob odnom klasse ellipticheskikh psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na podmnogoobrazii”, Matem. sb., 84:2 (1971), 163–195 | MR | Zbl

[4] V. V. Grushin, “Asimptoticheskoe povedenie sobstvennykh znachenii operatora Shredingera v tonkikh zamknutykh trubkakh”, Matem. zametki, 83:4 (2008), 503–519 | MR | Zbl

[5] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[6] M. Reed, B. Simon, Methods of Modern Mathematical Physics. V. 4. Analysis of Operators, Academic Press, New York–London, 1978 ; М. Рид, Б. Саймон, Методы современной матической физики. Т. 4. Анализ операторов, Мир, М., 1982 | MR | Zbl | MR | Zbl

[7] M. Reed, B. Simon, Methods of Modern Mathematical Physics. V. 2. Fourier Analisis, Self-Adjointness, Academic Press, New York–London, 1975 ; М. Рид, Б. Саймон, Методы современной математической физики. Т. 2. Гармонический анализ. Самосопряженность, Мир, М., 1978 | MR | Zbl | MR

[8] R. Saito, G. Dresslhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998