Algebras with Periodic Shifts of Ext Degrees
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 705-724.

Voir la notice de l'article provenant de la source Math-Net.Ru

The so-called $\lambda$-Koszul algebra and $\lambda$-Koszul module are introduced. We give different equivalent descriptions of a $\lambda$-Koszul algebra in terms of its minimal graded projective resolution and the Yoneda $\operatorname{Ext}$-algebra $E(A)=\bigoplus_{i\ge 0}\operatorname{Ext}^i_A(\mathbb F,\mathbb F)$. The "$\lambda$-Koszulity" of a finitely generated graded module is discussed and the concepts of (strongly) weakly $\lambda$-Koszul module are introduced. Finally, we discuss the $A_{\infty}$-structure on the Yoneda $\operatorname{Ext}$-algebra of a $\lambda$-Koszul algebra.
Mots-clés : $\lambda$-Koszul algebras (modules)
Keywords: (strongly) weakly $\lambda$-Koszul, Yoneda $\operatorname{Ext}$-algebras, $A_{\infty}$-algebras, Lie algebra, module over a graded algebra.
@article{MZM_2009_86_5_a7,
     author = {Lu Jiafeng},
     title = {Algebras with {Periodic} {Shifts} of {Ext} {Degrees}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {705--724},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a7/}
}
TY  - JOUR
AU  - Lu Jiafeng
TI  - Algebras with Periodic Shifts of Ext Degrees
JO  - Matematičeskie zametki
PY  - 2009
SP  - 705
EP  - 724
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a7/
LA  - ru
ID  - MZM_2009_86_5_a7
ER  - 
%0 Journal Article
%A Lu Jiafeng
%T Algebras with Periodic Shifts of Ext Degrees
%J Matematičeskie zametki
%D 2009
%P 705-724
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a7/
%G ru
%F MZM_2009_86_5_a7
Lu Jiafeng. Algebras with Periodic Shifts of Ext Degrees. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 705-724. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a7/

[1] S. B. Priddy, “Koszul resolutions”, Trans. Amer. Math. Soc., 152:1 (1970), 39–60 | DOI | MR | Zbl

[2] A. Beilinson, V. Ginzburg, W. Soergel, “Koszul duality patterns in representation theory”, J. Amer. Math. Soc., 9:2 (1996), 473–527 | DOI | MR | Zbl

[3] M. Artin, W. F. Schelter, “Graded algebras of global dimension 3”, Adv. Math., 66:2 (1987), 171–216 | DOI | MR | Zbl

[4] R. Berger, “Koszulity for nonquadratic algebras”, J. Algebra, 239:2 (2001), 705–734 | DOI | MR | Zbl

[5] E. L. Green, E. N. Marcos, R. Martínez-Villa, P. Zhang, “$D$-Koszul algebras”, J. Pure Appl. Algebra, 193:1–3 (2004), 141–162 | DOI | MR | Zbl

[6] J.-W. He, D.-M. Lu, “Higher Koszul algebras and $A$-infinity algebras”, J. Algebra, 293:2 (2005), 335–362 | DOI | MR | Zbl

[7] E. L. Green, R. Martínez-Villa, “Koszul and Yoneda algebras”, Representation Theory of Algebras (Cocoyoc, 1994), CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI, 1996, 247–297 | MR | Zbl

[8] R. Martínez-Villa, D. Zacharia, “Approximations with modules having linear resolutions”, J. Algebra, 266:2 (2003), 671–697 | DOI | MR | Zbl

[9] J. D. Stasheff, “Homotopy associativity of $H$-spaces. I”, Trans. Amer. Math. Soc., 108:2 (1963), 275–292 | DOI | MR | Zbl

[10] B. Keller, “Introduction to $A$-infinity algebras and modules”, Homology Homotopy Appl., 3:1 (2001), 1–35 | MR | Zbl

[11] B. Keller, “Deriving DG categories”, Ann. Sci. École Norm. Sup. (4), 27:1 (1994), 63–102 | MR | Zbl

[12] B. Keller, “Bimodule complexes via strong homotopy actions”, Algebr. Represent. Theory, 3:4 (2000), 357–376 | DOI | MR | Zbl

[13] B. Keller, $A$-Infinity algebras in representation theory, Contribution to the Proceedings of ICRA IX, Beijing, 2000

[14] D. M. Lu, J. H. Palmieri, Q. S. Wu, J. J. Zhang, “$A_\infty$-algebras for ring theorists”, Algebra Colloq., 11:1 (2004), 91–128 | MR | Zbl

[15] E. L. Green, E. N. Marcos, “$\delta$-Koszul algebras”, Comm. Algebra, 33:6 (2005), 1753–1764 | DOI | MR | Zbl