Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_5_a5, author = {Ji Shu and Jian Zhang}, title = {Global {Existence} for a {System} of {Weakly} {Coupled} {Nonlinear} {Schr\"{o}dinger} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {686--691}, publisher = {mathdoc}, volume = {86}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/} }
TY - JOUR AU - Ji Shu AU - Jian Zhang TI - Global Existence for a System of Weakly Coupled Nonlinear Schr\"{o}dinger Equations JO - Matematičeskie zametki PY - 2009 SP - 686 EP - 691 VL - 86 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/ LA - ru ID - MZM_2009_86_5_a5 ER -
Ji Shu; Jian Zhang. Global Existence for a System of Weakly Coupled Nonlinear Schr\"{o}dinger Equations. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 686-691. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/
[1] L. Bergé, “Wave collapse in physics: principles and applications to light and plasma waves”, Phys. Rep., 303:5–6 (1998), 259–370 | DOI | MR
[2] G. Fibich, G. Papanicolaou, “Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension”, SIAM J. Appl. Math., 60:1 (2000), 183–240 | DOI | MR | Zbl
[3] M. Lakshmanan, T. Kanna, R. Radhakrishnan, “Shape-changing collisions of coupled bright solitons in birefringent optical fibers”, Rep. Math. Phys., 46:1–2 (2000), 143–156 | DOI | MR | Zbl
[4] C. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers”, IEEE J. Quantum Electron., 23:2 (1987), 174–176 | DOI
[5] J. Ginibre, G. Velo, “On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case”, J. Funct. Anal., 32:1 (1979), 1–32 | DOI | MR | Zbl
[6] T. Kato, “On nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 46:1 (1987), 113–129 | MR | Zbl
[7] R. T. Glassey, “On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations”, J. Math. Phys., 18:9 (1977), 1794–1797 | DOI | MR | Zbl
[8] T. Ogawa, Y. Tsutsumi, “Blow-up of $H^1$ solution for the nonlinear Schrödinger equation”, J. Differential Equations, 92:2 (1991), 317–330 | DOI | MR | Zbl
[9] T. Ogawa, Y. Tsutsumi, “Blow-up of $H^1$ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity”, Proc. Amer. Math. Soc., 111:2 (1991), 487–496 | DOI | MR | Zbl
[10] H. Berestycki, T. Cazenave, “Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires”, C. R. Acad. Sci. Paris Sér. I Math., 293:9 (1981), 489–492 | MR | Zbl
[11] M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys., 87:4 (1983), 567–576 | DOI | MR | Zbl
[12] J. Zhang, “Sharp conditions of global existence for nonlinear Schrödinger and Klein–Gordon equations”, Nonlinear Anal. Ser. A. Theory Methods Appl., 48:2 (2002), 191–207 | DOI | MR | Zbl
[13] J. Zhang, “Cross-constrained variational problem and nonlinear Schrödinger equation”, Foundations of Computational Mathematics, Proceedings of Smalefest 2000 (Hong Kong, July 13–17, 2000), World Sci. Publ., River Edge, NJ, 2002, 457–469 | MR | Zbl
[14] T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Text. Metodos Matem., 22, Univ. Federal Publ., Rio de Janeiro, 1989
[15] J. Shu, J. Zhang, “Sharp conditions of global existence for a two-wave interaction model in cubic nonlinear media”, Chinese Ann. Math. Ser. A, 28:6 (2007), 843–852 | MR | Zbl
[16] Y. Tsutsumi, J. Zhang, “Instability of optical solitons for two-wave interaction model in cubic nonlinear media”, Adv. Math. Sci. Appl., 8:2 (1998), 691–713 | MR | Zbl
[17] A. Ambrosetti, E. Colorado, “Standing waves of some coupled nonlinear Schrödinger equations”, J. London Math. Soc. (2), 75:1 (2007), 67–82 | DOI | MR | Zbl
[18] L. A. Maia, E. Montefusco, B. Pellacci, “Positive solutions for a weakly coupled nonlinear Schrödinger system”, J. Differential Equations, 229:2 (2006), 743–767 | DOI | MR | Zbl
[19] P. Bégout, “Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation”, Adv. Math. Sci. Appl., 12:2 (2002), 817–827 | MR | Zbl