Global Existence for a System of Weakly Coupled Nonlinear Schr\"{o}dinger Equations
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 686-691

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses the weakly coupled nonlinear Schrödinger equations in the supercritical case. With the best constant of Gagliardo–Nirenberg inequality, we derive a sufficient condition for the global existence of the solutions; this condition is expressed in terms of the stationary solutions (nonlinear ground state).
Keywords: weakly coupled nonlinear Schrödinger equations, Gagliardo–Nirenberg inequality, Cauchy problem, Laplace operator, nonlinear optics.
Mots-clés : global existence
@article{MZM_2009_86_5_a5,
     author = {Ji Shu and Jian Zhang},
     title = {Global {Existence} for a {System} of {Weakly} {Coupled} {Nonlinear} {Schr\"{o}dinger} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {686--691},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/}
}
TY  - JOUR
AU  - Ji Shu
AU  - Jian Zhang
TI  - Global Existence for a System of Weakly Coupled Nonlinear Schr\"{o}dinger Equations
JO  - Matematičeskie zametki
PY  - 2009
SP  - 686
EP  - 691
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/
LA  - ru
ID  - MZM_2009_86_5_a5
ER  - 
%0 Journal Article
%A Ji Shu
%A Jian Zhang
%T Global Existence for a System of Weakly Coupled Nonlinear Schr\"{o}dinger Equations
%J Matematičeskie zametki
%D 2009
%P 686-691
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/
%G ru
%F MZM_2009_86_5_a5
Ji Shu; Jian Zhang. Global Existence for a System of Weakly Coupled Nonlinear Schr\"{o}dinger Equations. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 686-691. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/