Global Existence for a System of Weakly Coupled Nonlinear Schr\"{o}dinger Equations
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 686-691
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper discusses the weakly coupled nonlinear Schrödinger equations in the supercritical case. With the best constant of Gagliardo–Nirenberg inequality, we derive a sufficient condition for the global existence of the solutions; this condition is expressed in terms of the stationary solutions (nonlinear ground state).
Keywords:
weakly coupled nonlinear Schrödinger equations, Gagliardo–Nirenberg inequality, Cauchy problem, Laplace operator, nonlinear optics.
Mots-clés : global existence
Mots-clés : global existence
@article{MZM_2009_86_5_a5,
author = {Ji Shu and Jian Zhang},
title = {Global {Existence} for a {System} of {Weakly} {Coupled} {Nonlinear} {Schr\"{o}dinger} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {686--691},
publisher = {mathdoc},
volume = {86},
number = {5},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/}
}
TY - JOUR
AU - Ji Shu
AU - Jian Zhang
TI - Global Existence for a System of Weakly Coupled Nonlinear Schr\"{o}dinger Equations
JO - Matematičeskie zametki
PY - 2009
SP - 686
EP - 691
VL - 86
IS - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/
LA - ru
ID - MZM_2009_86_5_a5
ER -
Ji Shu; Jian Zhang. Global Existence for a System of Weakly Coupled Nonlinear Schr\"{o}dinger Equations. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 686-691. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a5/