A Finiteness Criterion and Asymptotics for Codimensions of Generalized Identities
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 681-685.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an associative algebra over a field of characteristic zero. Then either all codimensions $\operatorname{gc}_n(A)$ of its generalized polynomial identities are infinite or $A$ is the sum of ideals $I$ and $J$ such that $\dim_FI\infty$ and $J$ is nilpotent. In the latter case, there exist numbers $n_0\in\mathbb N$, $C\in\mathbb Q_+$, and $t\in\mathbb Z_+$ for which $\operatorname{gc}_n(A)+\infty$ if $n\ge n_0$ and $\operatorname{gc}_n(A)\sim Cn^td^n$ as $n\to\infty$, where $d=\mathrm{PI}\exp(A)\in\mathbb Z_+$. Thus, in the latter case, conjectures of Amitsur and Regev on generalized codimensions hold.
Keywords: generalized polynomial identity, generalized polylineal polynomial, PI-algebra, PI-exponent, associative algebra, nilpotent ideal, division ring, semi-simple algebra.
@article{MZM_2009_86_5_a4,
     author = {A. S. Gordienko},
     title = {A {Finiteness} {Criterion} and {Asymptotics} for {Codimensions} of {Generalized} {Identities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {681--685},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a4/}
}
TY  - JOUR
AU  - A. S. Gordienko
TI  - A Finiteness Criterion and Asymptotics for Codimensions of Generalized Identities
JO  - Matematičeskie zametki
PY  - 2009
SP  - 681
EP  - 685
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a4/
LA  - ru
ID  - MZM_2009_86_5_a4
ER  - 
%0 Journal Article
%A A. S. Gordienko
%T A Finiteness Criterion and Asymptotics for Codimensions of Generalized Identities
%J Matematičeskie zametki
%D 2009
%P 681-685
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a4/
%G ru
%F MZM_2009_86_5_a4
A. S. Gordienko. A Finiteness Criterion and Asymptotics for Codimensions of Generalized Identities. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 681-685. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a4/

[1] A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surveys Monogr., 122, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[2] A. Berele, A. Regev, “Asymptotic behaviour of codimensions of p.i. algebras satisfying Capelli identities”, Trans. Amer. Math. Soc., 360:10 (2008), 5155–5172 | DOI | MR | Zbl

[3] V. Drensky, “Relations for the cocharacter sequences of $T$-ideals”, Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal'cev, Pt. 2 (Novosibirsk, 1989), Contemp. Math., 131, Pt. 2, Amer. Math. Soc., Providence, RI, 1992, 285–300 | MR | Zbl

[4] A. S. Gordienko, “Gipoteza Regeva i kokharaktery tozhdestv assotsiativnykh algebr PI-eksponenty 1 i 2”, Matem. zametki, 83:6 (2008), 815–824 | MR | Zbl

[5] K. I. Beidar, W. S. III Martindale, A. V. Mikhalev, Rings with Generalized Identities, Monogr. Textbooks Pure Appl. Math., 196, Marcel Dekker, New York, NY, 1996 | MR | Zbl

[6] A. S. Gordienko, “Korazmernosti obobschennykh polinomialnykh tozhdestv”, Matem. sb. (to appear)

[7] A. Regev, “Codimensions and trace codimensions of matrices are asymptotically equal”, Israel J. Math., 47:2–3 (1984), 246–250 | DOI | MR | Zbl