A Finiteness Criterion and Asymptotics for Codimensions of Generalized Identities
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 681-685
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be an associative algebra over a field of characteristic zero. Then either all codimensions $\operatorname{gc}_n(A)$ of its generalized polynomial identities are infinite or $A$ is the sum of ideals $I$ and $J$ such that $\dim_FI\infty$ and $J$ is nilpotent. In the latter case, there exist numbers $n_0\in\mathbb N$, $C\in\mathbb Q_+$, and $t\in\mathbb Z_+$ for which $\operatorname{gc}_n(A)+\infty$ if $n\ge n_0$ and $\operatorname{gc}_n(A)\sim Cn^td^n$ as $n\to\infty$, where $d=\mathrm{PI}\exp(A)\in\mathbb Z_+$. Thus, in the latter case, conjectures of Amitsur and Regev on generalized codimensions hold.
Keywords:
generalized polynomial identity, generalized polylineal polynomial, PI-algebra, PI-exponent, associative algebra, nilpotent ideal, division ring, semi-simple algebra.
@article{MZM_2009_86_5_a4,
author = {A. S. Gordienko},
title = {A {Finiteness} {Criterion} and {Asymptotics} for {Codimensions} of {Generalized} {Identities}},
journal = {Matemati\v{c}eskie zametki},
pages = {681--685},
publisher = {mathdoc},
volume = {86},
number = {5},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a4/}
}
A. S. Gordienko. A Finiteness Criterion and Asymptotics for Codimensions of Generalized Identities. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 681-685. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a4/