Examples of Divergent Fourier Series for Classes of Functions of Bounded $\Lambda$-Variation
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 664-672.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author has shown earlier that the requirement that a continuous function belong to the class $HBV([-\pi,\pi]^m)$ for $m\ge 3$ is not sufficient for the convergence of its Fourier series over rectangles. The author gave examples of functions of three and more variables from the Waterman class which are harmonic in the first variable and significantly narrower in the other variables and whose Fourier series are divergent at some point even on cubes. In the present paper, this assertion is strengthened. The main result is that such an example can be constructed even when the class with respect to the first variable is somewhat narrowed. Also the one-dimensional result due to Waterman is refined.
Mots-clés : divergent Fourier series, harmonic variation.
Keywords: function of bounded $\Lambda$-variation, convergence of Fourier series over rectangles and cubes, Waterman class of functions
@article{MZM_2009_86_5_a2,
     author = {A. N. Bakhvalov},
     title = {Examples of {Divergent} {Fourier} {Series} for {Classes} of {Functions} of {Bounded} $\Lambda${-Variation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {664--672},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a2/}
}
TY  - JOUR
AU  - A. N. Bakhvalov
TI  - Examples of Divergent Fourier Series for Classes of Functions of Bounded $\Lambda$-Variation
JO  - Matematičeskie zametki
PY  - 2009
SP  - 664
EP  - 672
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a2/
LA  - ru
ID  - MZM_2009_86_5_a2
ER  - 
%0 Journal Article
%A A. N. Bakhvalov
%T Examples of Divergent Fourier Series for Classes of Functions of Bounded $\Lambda$-Variation
%J Matematičeskie zametki
%D 2009
%P 664-672
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a2/
%G ru
%F MZM_2009_86_5_a2
A. N. Bakhvalov. Examples of Divergent Fourier Series for Classes of Functions of Bounded $\Lambda$-Variation. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 664-672. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a2/

[1] D. Waterman, “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl

[2] A. A. Saakyan, “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. AN ArmSSR. Ser. matem., 21:6 (1986), 517–529 | MR | Zbl

[3] A. I. Sablin, Funktsii ogranichennoi $\Lambda$-variatsii i ryady Fure, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1987

[4] A. I. Sablin, “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Matem., 1987, no. 10, 66–68 | MR | Zbl

[5] A. N. Bakhvalov, “O skhodimosti i lokalizatsii kratnykh ryadov Fure dlya klassov funktsii ogranichennoi $\Lambda$-variatsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2008, no. 3, 6–12 | MR

[6] A. N. Bakhvalov, “Nepreryvnost po $\Lambda $-variatsii funktsii mnogikh peremennykh i skhodimost kratnykh ryadov Fure”, Matem. sb., 193:12 (2002), 3–20 | MR | Zbl

[7] A. N. Bakhvalov, “Predstavlenie neperiodicheskikh funktsii ogranichennoi $\Lambda$-variatsii integralom Fure v mnogomernom sluchae”, Izv. RAN. Ser. matem., 67:6 (2003), 3–22 | MR | Zbl

[8] S. Perlman, D. Waterman, “Some remarks on functions of $\Lambda$-bounded variation”, Proc. Amer. Math. Soc., 74:1 (1979), 113–118 | DOI | MR | Zbl

[9] N. K. Bari, Trigonometricheskie ryady, Fizmatlit, M., 1961 | MR