Nonnegative Sectional Curvature Hypersurfaces in a Real Space Form
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 776-793.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the nonnegative sectional curvature hypersurfaces in a real space form $M^{n+1}(c)$. We obtain some rigidity results of nonnegative sectional curvature hypersurfaces $M^{n+1}(c)$ with constant mean curvature or with constant scalar curvature. In particular, we give a certain characterization of the Riemannian product $S^k(a)\times S^{n-k}(\sqrt{1-a^2})$, $1\le k\le n-1$, in $S^{n+1}(1)$ and the Riemannian product $H^k(\operatorname{tanh}^2r-1)\times S^{n-k}(\operatorname{coth}^2r-1)$, $1\le k\le n-1$, in $H^{n+1}(-1)$.
Mots-clés : hypersurface in Euclidean $n$-space
Keywords: space form, mean curvature, scalar curvature, principal curvature, sectional curvature, umbilical sphere, Codazzi equation, Ricci identity.
@article{MZM_2009_86_5_a13,
     author = {Shichang Shu and Annie Yi Han},
     title = {Nonnegative {Sectional} {Curvature} {Hypersurfaces} in a {Real} {Space} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {776--793},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a13/}
}
TY  - JOUR
AU  - Shichang Shu
AU  - Annie Yi Han
TI  - Nonnegative Sectional Curvature Hypersurfaces in a Real Space Form
JO  - Matematičeskie zametki
PY  - 2009
SP  - 776
EP  - 793
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a13/
LA  - ru
ID  - MZM_2009_86_5_a13
ER  - 
%0 Journal Article
%A Shichang Shu
%A Annie Yi Han
%T Nonnegative Sectional Curvature Hypersurfaces in a Real Space Form
%J Matematičeskie zametki
%D 2009
%P 776-793
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a13/
%G ru
%F MZM_2009_86_5_a13
Shichang Shu; Annie Yi Han. Nonnegative Sectional Curvature Hypersurfaces in a Real Space Form. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 776-793. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a13/

[1] H. Alencar, M. do Carmo, “Hypersurfaces with constant mean curvature in spheres”, Proc. Amer. Math. Soc., 120:4 (1994), 1223–1229 | DOI | MR | Zbl

[2] H. Li, “Hypersurfaces with constant scalar curvature in space forms”, Math. Ann., 305:4 (1996), 665–672 | DOI | MR | Zbl

[3] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Ser. Pure Math., 1, World Sci. Publ., Singapore, 1984 | MR | Zbl

[4] Q.-M. Cheng, “Complete hypersurfaces in a Euclidean space $\mathbb R^{n+1}$ with constant scalar curvature”, Indiana Univ. Math. J., 51:1 (2002), 53–68 | DOI | MR | Zbl

[5] Q.-M. Cheng, “Hypersurfaces in a unit sphere $S^{n+1}(1)$ with constant scalar curvature”, J. London Math. Soc. (2), 64:3 (2001), 755–768 | DOI | MR | Zbl

[6] S.-Y. Cheng, S.-T. Yau, “Hypersurfaces with constant scalar curvature”, Math. Ann., 225:3 (1977), 195–204 | DOI | MR | Zbl

[7] S. Y. Cheng, S. T. Yau, “Differential equations on riemannian manifolds and their geometric applications”, Comm. Pure Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl

[8] K. Nomizu, B. Smyth, “A formula of Simons' type and hypersurfaces with constant mean curvature”, J. Differential Geometry, 3 (1969), 367–377 | MR | Zbl

[9] X. Liu, W. Su, “Hypersurfaces with constant scalar curvature in a hyperbolic space form”, Balkan J. Geom. Appl., 7:1 (2002), 121–132 | MR | Zbl

[10] E. Cartan, “Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques”, Math. Z., 45 (1939), 335–367 | DOI | MR | Zbl

[11] T. Otsuki, “Minimal hypersurfaces in a Riemannian manifold of constant curvature”, Amer. J. Math., 92 (1970), 145–173 | DOI | MR | Zbl

[12] G. Wei, “Complete hypersurfaces with constant mean curvature in a unit sphere”, Monatsh. Math., 149:3 (2006), 251–258 | DOI | MR | Zbl

[13] Z. Hu, S. Zhai, “Hypersurfaces of the hyperbolic space with constant scalar curvature”, Results Math., 48:1–2 (2005), 65–88 | MR | Zbl