Nonnegative Sectional Curvature Hypersurfaces in a Real Space Form
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 776-793
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we investigate the nonnegative sectional curvature hypersurfaces in a real space form $M^{n+1}(c)$. We obtain some rigidity results of nonnegative sectional curvature hypersurfaces $M^{n+1}(c)$ with constant mean curvature or with constant scalar curvature. In particular, we give a certain characterization of the Riemannian product $S^k(a)\times S^{n-k}(\sqrt{1-a^2})$, $1\le k\le n-1$, in $S^{n+1}(1)$ and the Riemannian product $H^k(\operatorname{tanh}^2r-1)\times S^{n-k}(\operatorname{coth}^2r-1)$, $1\le k\le n-1$, in $H^{n+1}(-1)$.
Mots-clés :
hypersurface in Euclidean $n$-space
Keywords: space form, mean curvature, scalar curvature, principal curvature, sectional curvature, umbilical sphere, Codazzi equation, Ricci identity.
Keywords: space form, mean curvature, scalar curvature, principal curvature, sectional curvature, umbilical sphere, Codazzi equation, Ricci identity.
@article{MZM_2009_86_5_a13,
author = {Shichang Shu and Annie Yi Han},
title = {Nonnegative {Sectional} {Curvature} {Hypersurfaces} in a {Real} {Space} {Form}},
journal = {Matemati\v{c}eskie zametki},
pages = {776--793},
publisher = {mathdoc},
volume = {86},
number = {5},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a13/}
}
Shichang Shu; Annie Yi Han. Nonnegative Sectional Curvature Hypersurfaces in a Real Space Form. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 776-793. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a13/