On the Uniqueness and Integrability of Multiple Trigonometric Series
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 761-775.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under minimal constraints on the coefficients, we prove uniqueness theorems for multiple trigonometric series in which, instead of pointwise convergence, we consider the convergence of integral means of spherical, cubic, and other partial sums. We also obtain sufficient conditions for the integrability of multiple trigonometric series, i.e., conditions under which these series are Fourier series.
Keywords: multiple trigonometric series, Fourier series, integral means, spherical and cubic partial sums, periodic function, binary net of cubes, set of the second category.
@article{MZM_2009_86_5_a12,
     author = {A. A. Talalyan},
     title = {On the {Uniqueness} and {Integrability} of {Multiple} {Trigonometric} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {761--775},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a12/}
}
TY  - JOUR
AU  - A. A. Talalyan
TI  - On the Uniqueness and Integrability of Multiple Trigonometric Series
JO  - Matematičeskie zametki
PY  - 2009
SP  - 761
EP  - 775
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a12/
LA  - ru
ID  - MZM_2009_86_5_a12
ER  - 
%0 Journal Article
%A A. A. Talalyan
%T On the Uniqueness and Integrability of Multiple Trigonometric Series
%J Matematičeskie zametki
%D 2009
%P 761-775
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a12/
%G ru
%F MZM_2009_86_5_a12
A. A. Talalyan. On the Uniqueness and Integrability of Multiple Trigonometric Series. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 761-775. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a12/

[1] J. Bourgain, “Spherical summation and uniqueness of multiple trigonometric series”, Internat. Math. Res. Notices, 1996, no. 3, 93–107 | DOI | MR | Zbl

[2] J. M. Ash, G. Wang, “Some spherical uniqueness theorems for multiple trigonometric series”, Ann. of Math. (2), 151:1 (2000), 1–33 | DOI | MR | Zbl

[3] B. Connes, “Sur les coefficients des séries trigonométriques convergentes sphériquement”, C. R. Acad. Sci. Paris Sér. A, 283:4 (1976), 159–161 | MR | Zbl

[4] J. M. Ash, C. Freiling, D. Rinne, “Uniqueness of rectangularly convergent trigonometric series”, Ann. of Math. (2), 137:1 (1993), 145–166 | DOI | MR | Zbl

[5] Sh. T. Tetunashvili, “O edinstvennosti kratnykh trigonometricheskikh ryadov”, Matem. zametki, 58:4 (1995), 596–603 | MR | Zbl

[6] Sh. T. Tetunashvili, “O nekotorykh kratnykh funktsionalnykh ryadakh i reshenie problemy edinstvennosti kratnykh trigonometricheskikh ryadov dlya skhodimosti po Pringskheimu”, Matem. sb., 182:8 (1991), 1158–1176 | MR | Zbl

[7] A. A. Talalyan, “O nekotorykh svoistvakh edinstvennosti kratnykh trigonometricheskikh ryadov i garmonicheskikh funktsii”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 621–650 | MR | Zbl

[8] A. A. Talalyan, “O edinstvennosti kratnykh trigonometricheskikh ryadov”, Matem. sb., 132:1 (1987), 104–130 | MR | Zbl

[9] A. A. Talalyan, “O edinstvennosti dvoinykh trigonometricheskikh ryadov”, Izv. AN ArmSSR. Ser. matem., 20:6 (1985), 426–462 | MR | Zbl

[10] V. A. Skvortsov, A. A. Talalyan, “Nekotorye voprosy edinstvennosti kratnykh ryadov po sisteme Khaara i trigonometricheskoi sisteme”, Matem. zametki, 46:2 (1989), 104–113 | MR | Zbl

[11] S. Saks, Teoriya integrala, IL, M., 1949 | MR | Zbl