Pontryagin's Theorem and Spectral Stability Analysis of Solitons
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 643-658.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the present paper is the use of Pontryagin's theorem for proving a criterion, based on the difference in the number of negative eigenvalues between two self-adjoint operators $L_-$ and $L_+$, for the linear part of a Hamiltonian system to have eigenvalues with strictly positive real part (unstable eigenvalues).
Keywords: Hamiltonian system, linearization, stability, unstable eigenvalue, Pontryagin space, block representation, Hilbert space.
Mots-clés : existence criterion, soliton
@article{MZM_2009_86_5_a0,
     author = {T. Ya. Azizov and M. V. Chugunova},
     title = {Pontryagin's {Theorem} and {Spectral} {Stability} {Analysis} of {Solitons}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--658},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/}
}
TY  - JOUR
AU  - T. Ya. Azizov
AU  - M. V. Chugunova
TI  - Pontryagin's Theorem and Spectral Stability Analysis of Solitons
JO  - Matematičeskie zametki
PY  - 2009
SP  - 643
EP  - 658
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/
LA  - ru
ID  - MZM_2009_86_5_a0
ER  - 
%0 Journal Article
%A T. Ya. Azizov
%A M. V. Chugunova
%T Pontryagin's Theorem and Spectral Stability Analysis of Solitons
%J Matematičeskie zametki
%D 2009
%P 643-658
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/
%G ru
%F MZM_2009_86_5_a0
T. Ya. Azizov; M. V. Chugunova. Pontryagin's Theorem and Spectral Stability Analysis of Solitons. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/

[1] A. T. Il'ichev, A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theor. Comp. Fluid Dyn., 3:6 (1992), 307–326 | DOI | Zbl

[2] F. Dias, E. A. Kuznetsov, “On the nonlinear stability of solitary wave solutions of the fifth-order Korteweg–de Vries equation”, Phys. Lett. A, 263:1–2 (1999), 98–104 | DOI | MR | Zbl

[3] D. E. Pelinovsky, J. Yang, “Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations”, Stud. Appl. Math., 115:1 (2005), 109–137 | DOI | MR | Zbl

[4] G. Perelman, “Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations”, Comm. Partial Differential Equations, 29:7–8 (2004), 1051–1095 | DOI | MR | Zbl

[5] B. Sandstede, “Stability of multiple-pulse solutions”, Trans. Amer. Math. Soc., 350:2 (1998), 429–472 | DOI | MR | Zbl

[6] Y. Kodama, D. Pelinovsky, “Spectral stability and time evolution of $N$-solitons in the KdV hierarchy”, J. Phys. A, 38:27 (2005), 6129–6140 | DOI | MR | Zbl

[7] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74:1 (1987), 160–197 | DOI | MR | Zbl

[8] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal., 94:2 (1990), 308–348 | DOI | MR | Zbl

[9] M. Chugunova, D. Pelinovsky, “Block-diagonalization of the symmetric first-order coupled-mode system”, SIAM J. Appl. Dyn. Syst., 5:1 (2006), 66–83 | DOI | MR | Zbl

[10] M. Grillakis, “Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system”, Comm. Pure Appl. Math., 43:3 (1990), 299–333 | DOI | MR | Zbl

[11] C. K. R. T. Jones, “An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation”, J. Differential Equations, 71:1 (1988), 34–62 | DOI | MR | Zbl

[12] M. Grillakis, “Linearized instability for nonlinear Schrödinger and Klein–Gordon equations”, Comm. Pure Appl. Math., 41:6 (1988), 747–774 | DOI | MR | Zbl

[13] D. E. Pelinovsky, “Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2055 (2005), 783–812 | DOI | MR | Zbl

[14] S. Cuccagna, D. Pelinovsky, V. Vougalter, “Spectra of positive and negative energies in the linearized NLS problem”, Comm. Pure Appl. Math., 58:1 (2005), 1–29 | DOI | MR | Zbl

[15] K. McLeod, “Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\mathbb R^n$. II”, Trans. Amer. Math. Soc., 339:2 (1993), 495–505 | DOI | MR | Zbl

[16] L. S. Pontryagin, “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. matem., 8:6 (1944), 243–280 | MR | Zbl

[17] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl

[18] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[19] T. Ya. Azizov, A. Dijksma, V. L. Khatskevich, “On the defect of noncontractive operators in Krein spaces: a new formula and some applications”, Contributions to operator theory in spaces with an indefinite metric (Vienna, 1995), Oper. Theory Adv. Appl., 106, Birkhauser, Basel, 1998, 91–112 | MR | Zbl