Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_5_a0, author = {T. Ya. Azizov and M. V. Chugunova}, title = {Pontryagin's {Theorem} and {Spectral} {Stability} {Analysis} of {Solitons}}, journal = {Matemati\v{c}eskie zametki}, pages = {643--658}, publisher = {mathdoc}, volume = {86}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/} }
T. Ya. Azizov; M. V. Chugunova. Pontryagin's Theorem and Spectral Stability Analysis of Solitons. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/
[1] A. T. Il'ichev, A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theor. Comp. Fluid Dyn., 3:6 (1992), 307–326 | DOI | Zbl
[2] F. Dias, E. A. Kuznetsov, “On the nonlinear stability of solitary wave solutions of the fifth-order Korteweg–de Vries equation”, Phys. Lett. A, 263:1–2 (1999), 98–104 | DOI | MR | Zbl
[3] D. E. Pelinovsky, J. Yang, “Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations”, Stud. Appl. Math., 115:1 (2005), 109–137 | DOI | MR | Zbl
[4] G. Perelman, “Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations”, Comm. Partial Differential Equations, 29:7–8 (2004), 1051–1095 | DOI | MR | Zbl
[5] B. Sandstede, “Stability of multiple-pulse solutions”, Trans. Amer. Math. Soc., 350:2 (1998), 429–472 | DOI | MR | Zbl
[6] Y. Kodama, D. Pelinovsky, “Spectral stability and time evolution of $N$-solitons in the KdV hierarchy”, J. Phys. A, 38:27 (2005), 6129–6140 | DOI | MR | Zbl
[7] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74:1 (1987), 160–197 | DOI | MR | Zbl
[8] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal., 94:2 (1990), 308–348 | DOI | MR | Zbl
[9] M. Chugunova, D. Pelinovsky, “Block-diagonalization of the symmetric first-order coupled-mode system”, SIAM J. Appl. Dyn. Syst., 5:1 (2006), 66–83 | DOI | MR | Zbl
[10] M. Grillakis, “Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system”, Comm. Pure Appl. Math., 43:3 (1990), 299–333 | DOI | MR | Zbl
[11] C. K. R. T. Jones, “An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation”, J. Differential Equations, 71:1 (1988), 34–62 | DOI | MR | Zbl
[12] M. Grillakis, “Linearized instability for nonlinear Schrödinger and Klein–Gordon equations”, Comm. Pure Appl. Math., 41:6 (1988), 747–774 | DOI | MR | Zbl
[13] D. E. Pelinovsky, “Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2055 (2005), 783–812 | DOI | MR | Zbl
[14] S. Cuccagna, D. Pelinovsky, V. Vougalter, “Spectra of positive and negative energies in the linearized NLS problem”, Comm. Pure Appl. Math., 58:1 (2005), 1–29 | DOI | MR | Zbl
[15] K. McLeod, “Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\mathbb R^n$. II”, Trans. Amer. Math. Soc., 339:2 (1993), 495–505 | DOI | MR | Zbl
[16] L. S. Pontryagin, “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. matem., 8:6 (1944), 243–280 | MR | Zbl
[17] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR | Zbl
[18] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl
[19] T. Ya. Azizov, A. Dijksma, V. L. Khatskevich, “On the defect of noncontractive operators in Krein spaces: a new formula and some applications”, Contributions to operator theory in spaces with an indefinite metric (Vienna, 1995), Oper. Theory Adv. Appl., 106, Birkhauser, Basel, 1998, 91–112 | MR | Zbl