Pontryagin's Theorem and Spectral Stability Analysis of Solitons
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 643-658

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the present paper is the use of Pontryagin's theorem for proving a criterion, based on the difference in the number of negative eigenvalues between two self-adjoint operators $L_-$ and $L_+$, for the linear part of a Hamiltonian system to have eigenvalues with strictly positive real part (unstable eigenvalues).
Keywords: Hamiltonian system, linearization, stability, unstable eigenvalue, Pontryagin space, block representation, Hilbert space.
Mots-clés : existence criterion, soliton
@article{MZM_2009_86_5_a0,
     author = {T. Ya. Azizov and M. V. Chugunova},
     title = {Pontryagin's {Theorem} and {Spectral} {Stability} {Analysis} of {Solitons}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--658},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/}
}
TY  - JOUR
AU  - T. Ya. Azizov
AU  - M. V. Chugunova
TI  - Pontryagin's Theorem and Spectral Stability Analysis of Solitons
JO  - Matematičeskie zametki
PY  - 2009
SP  - 643
EP  - 658
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/
LA  - ru
ID  - MZM_2009_86_5_a0
ER  - 
%0 Journal Article
%A T. Ya. Azizov
%A M. V. Chugunova
%T Pontryagin's Theorem and Spectral Stability Analysis of Solitons
%J Matematičeskie zametki
%D 2009
%P 643-658
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/
%G ru
%F MZM_2009_86_5_a0
T. Ya. Azizov; M. V. Chugunova. Pontryagin's Theorem and Spectral Stability Analysis of Solitons. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/