Pontryagin's Theorem and Spectral Stability Analysis of Solitons
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 643-658
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result of the present paper is the use of Pontryagin's theorem for proving a criterion, based on the difference in the number of negative eigenvalues between two self-adjoint operators $L_-$ and $L_+$, for the linear part of a Hamiltonian system to have eigenvalues with strictly positive real part (unstable eigenvalues).
Keywords:
Hamiltonian system, linearization, stability, unstable eigenvalue, Pontryagin space, block representation, Hilbert space.
Mots-clés : existence criterion, soliton
Mots-clés : existence criterion, soliton
@article{MZM_2009_86_5_a0,
author = {T. Ya. Azizov and M. V. Chugunova},
title = {Pontryagin's {Theorem} and {Spectral} {Stability} {Analysis} of {Solitons}},
journal = {Matemati\v{c}eskie zametki},
pages = {643--658},
publisher = {mathdoc},
volume = {86},
number = {5},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/}
}
T. Ya. Azizov; M. V. Chugunova. Pontryagin's Theorem and Spectral Stability Analysis of Solitons. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a0/