Approximation of Continuous Functions on Complex Banach Spaces
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 557-570

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a complex analog of Kurzweil's theorem on the approximation of continuous functions on separable Banach spaces admitting a separating polynomial and obtain a complex analog of new results due to Boiso and Hájek.
Keywords: analytic approximation, uniform continuity, Banach space, analytic function, polyadditive mapping, antilinear functional, symmetric linear operator.
Mots-clés : uniform convergence
@article{MZM_2009_86_4_a8,
     author = {M. A. Mitrofanov},
     title = {Approximation of {Continuous} {Functions} on {Complex} {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {557--570},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a8/}
}
TY  - JOUR
AU  - M. A. Mitrofanov
TI  - Approximation of Continuous Functions on Complex Banach Spaces
JO  - Matematičeskie zametki
PY  - 2009
SP  - 557
EP  - 570
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a8/
LA  - ru
ID  - MZM_2009_86_4_a8
ER  - 
%0 Journal Article
%A M. A. Mitrofanov
%T Approximation of Continuous Functions on Complex Banach Spaces
%J Matematičeskie zametki
%D 2009
%P 557-570
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a8/
%G ru
%F MZM_2009_86_4_a8
M. A. Mitrofanov. Approximation of Continuous Functions on Complex Banach Spaces. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 557-570. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a8/