Approximation of Continuous Functions on Complex Banach Spaces
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 557-570
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a complex analog of Kurzweil's theorem on the approximation of continuous functions on separable Banach spaces admitting a separating polynomial and obtain a complex analog of new results due to Boiso and Hájek.
Keywords:
analytic approximation, uniform continuity, Banach space, analytic function, polyadditive mapping, antilinear functional, symmetric linear operator.
Mots-clés : uniform convergence
Mots-clés : uniform convergence
@article{MZM_2009_86_4_a8,
author = {M. A. Mitrofanov},
title = {Approximation of {Continuous} {Functions} on {Complex} {Banach} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {557--570},
publisher = {mathdoc},
volume = {86},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a8/}
}
M. A. Mitrofanov. Approximation of Continuous Functions on Complex Banach Spaces. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 557-570. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a8/