A Note on Null Subspaces of Odd Polynomials
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 543-549
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain a generalization of the Aron–Hájek theorem about the null subspaces of homogeneous odd polynomials (in several variables) to the case of arbitrary odd polynomials.
Keywords:
homogeneous polynomials, linear subspace, polynomial of odd degree, ordered partition of a set.
Mots-clés : Gram matrix
Mots-clés : Gram matrix
@article{MZM_2009_86_4_a6,
author = {T. Yu. Kulikova},
title = {A {Note} on {Null} {Subspaces} of {Odd} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {543--549},
year = {2009},
volume = {86},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a6/}
}
T. Yu. Kulikova. A Note on Null Subspaces of Odd Polynomials. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 543-549. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a6/
[1] R. M. Aron, P. Hájek, “Zero sets of polynomials in several variables”, Arch. Math. (Basel), 86:6 (2006), 561–568 | MR | Zbl
[2] B. J. Birch, “Homogeneous forms of odd degree in a large number of variables”, Mathematica, 4 (1957), 102–105 | MR | Zbl
[3] R. Aron, R. Gonzalo, A. Zagorodnyuk, “Zeroes of real polynomials”, Linear and Multilinear Algebra, 48:2 (2000), 107–115 | MR | Zbl
[4] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[5] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, AFTs, M., 1999 | MR | Zbl