Stabilization of Locally Minimal Trees
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 512-524 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that any locally minimal tree on Euclidean space can be “stabilized” (i.e., rendered shortest) by adding boundary vertices without changing the initial tree as a set in space. This result is useful for constructing examples of shortest trees.
Keywords: Steiner's problem, Steiner minimal tree, shortest tree, shortest network, framed network, Euclidean network, stabilization of a network.
@article{MZM_2009_86_4_a3,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Stabilization of {Locally} {Minimal} {Trees}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {512--524},
     year = {2009},
     volume = {86},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Stabilization of Locally Minimal Trees
JO  - Matematičeskie zametki
PY  - 2009
SP  - 512
EP  - 524
VL  - 86
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/
LA  - ru
ID  - MZM_2009_86_4_a3
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Stabilization of Locally Minimal Trees
%J Matematičeskie zametki
%D 2009
%P 512-524
%V 86
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/
%G ru
%F MZM_2009_86_4_a3
A. O. Ivanov; A. A. Tuzhilin. Stabilization of Locally Minimal Trees. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 512-524. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/

[1] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Sovremennaya matematika, In-t kompyuter. issled., Izhevsk, 2003

[2] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lektsii po teorii grafov, Uchebnoe posobie, Nauka, M., 1990 | MR | Zbl