Stabilization of Locally Minimal Trees
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 512-524.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any locally minimal tree on Euclidean space can be “stabilized” (i.e., rendered shortest) by adding boundary vertices without changing the initial tree as a set in space. This result is useful for constructing examples of shortest trees.
Keywords: Steiner's problem, Steiner minimal tree, shortest tree, shortest network, framed network, Euclidean network, stabilization of a network.
@article{MZM_2009_86_4_a3,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Stabilization of {Locally} {Minimal} {Trees}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {512--524},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Stabilization of Locally Minimal Trees
JO  - Matematičeskie zametki
PY  - 2009
SP  - 512
EP  - 524
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/
LA  - ru
ID  - MZM_2009_86_4_a3
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Stabilization of Locally Minimal Trees
%J Matematičeskie zametki
%D 2009
%P 512-524
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/
%G ru
%F MZM_2009_86_4_a3
A. O. Ivanov; A. A. Tuzhilin. Stabilization of Locally Minimal Trees. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 512-524. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/

[1] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Sovremennaya matematika, In-t kompyuter. issled., Izhevsk, 2003

[2] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lektsii po teorii grafov, Uchebnoe posobie, Nauka, M., 1990 | MR | Zbl