Stabilization of Locally Minimal Trees
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 512-524
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that any locally minimal tree on Euclidean space can be “stabilized” (i.e., rendered shortest) by adding boundary vertices without changing the initial tree as a set in space. This result is useful for constructing examples of shortest trees.
Keywords:
Steiner's problem, Steiner minimal tree, shortest tree, shortest network, framed network, Euclidean network, stabilization of a network.
@article{MZM_2009_86_4_a3,
author = {A. O. Ivanov and A. A. Tuzhilin},
title = {Stabilization of {Locally} {Minimal} {Trees}},
journal = {Matemati\v{c}eskie zametki},
pages = {512--524},
year = {2009},
volume = {86},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/}
}
A. O. Ivanov; A. A. Tuzhilin. Stabilization of Locally Minimal Trees. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 512-524. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a3/