On Series Arising from the Approximation of Periodic Differentiable Functions by Poisson Integrals
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 497-511
Voir la notice de l'article provenant de la source Math-Net.Ru
For series of special form, we obtain an expansion in powers of the parameter. The coefficients of the expansion can be written out explicitly in terms of Bernoulli polynomials. In a particular case, we obtain an expansion in powers of the parameter of upper bounds for deviations of periodic differentiable functions from their Poisson integrals.
Keywords:
periodic differentiable function, Stirling numbers, conformal mapping.
Mots-clés : Poisson integral, Bernoulli polynomial, Euler polynomial
Mots-clés : Poisson integral, Bernoulli polynomial, Euler polynomial
@article{MZM_2009_86_4_a2,
author = {V. P. Zastavnyi},
title = {On {Series} {Arising} from the {Approximation} of {Periodic} {Differentiable} {Functions} by {Poisson} {Integrals}},
journal = {Matemati\v{c}eskie zametki},
pages = {497--511},
publisher = {mathdoc},
volume = {86},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a2/}
}
TY - JOUR AU - V. P. Zastavnyi TI - On Series Arising from the Approximation of Periodic Differentiable Functions by Poisson Integrals JO - Matematičeskie zametki PY - 2009 SP - 497 EP - 511 VL - 86 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a2/ LA - ru ID - MZM_2009_86_4_a2 ER -
V. P. Zastavnyi. On Series Arising from the Approximation of Periodic Differentiable Functions by Poisson Integrals. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 497-511. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a2/