Keywords: harmonicity, Peano derivative, summability, subharmonic function, Lipschitz constant.
@article{MZM_2009_86_4_a13,
author = {D. S. Telyakovskii},
title = {A {Sufficient} {Condition} for the {Harmonicity} of {Functions} of {Two} {Variables}},
journal = {Matemati\v{c}eskie zametki},
pages = {628--640},
year = {2009},
volume = {86},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a13/}
}
D. S. Telyakovskii. A Sufficient Condition for the Harmonicity of Functions of Two Variables. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 628-640. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a13/
[1] J. Priwaloff, “Sur les fonctions harmoniques”, Matem. sb., 32:3 (1925), 464–471 | Zbl
[2] G. P. Tolstov, “Ob ogranichennykh funktsiyakh, udovletvoryayuschikh uravneniyu Laplasa”, Matem. sb., 29:3 (1951), 559–564 | MR | Zbl
[3] D. S. Telyakovskii, “Ob odnom obobschenii teoremy Lumana–Menshova”, Matem. zametki, 39:4 (1986), 539–549 | MR | Zbl
[4] I. I. Privalov, Subgarmonicheskie funktsii, Matematika v monografiyakh. Osnovnaya seriya, 2, ONTI, M.–L., 1937
[5] D. S. Telyakovskii, “Ob odnom dostatochnom uslovii garmonichnosti funktsii dvukh peremennykh”, Sovremennye metody teorii kraevykh zadach, Materialy Voronezhskoi vesennei matematicheskoi shkoly “Pontryaginskie chteniya – XVII”, VGU, Voronezh, 2006, 177–178
[6] I. G. Petrovskii, “Metod Perrona resheniya zadachi Dirikhle”, UMN, 1941, no. 8, 107–114 | MR | Zbl
[7] D. Menchoff, “Sur la généralisation des conditions de Cauchy–Riemann”, Fund. Math., 25 (1935), 59–97 | Zbl