A Sufficient Condition for the Harmonicity of Functions of Two Variables
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 628-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, one can weaken the continuity assumption in the claim that any continuous function $u(x,y)$ satisfying the Laplace equation is harmonic. Tolstov relocated this assumption by the boundedness condition and, later on, the author of the present paper relocated it by the summability condition. The summability condition cannot be substantially weakened here. In the present paper, a generalization of the Laplace equation is studied. Assume that, at every point of a domain, the sum of second derivatives (treated in the Peano sense) of a function along a pair of orthogonal lines passing through the point vanishes, where the directions of the lines in the pair depend on the point in general. It is proved that the summability of the function is sufficient for its harmonicity. One cannot get rid of the orthogonality assumption for the above lines.
Mots-clés : Laplace equation
Keywords: harmonicity, Peano derivative, summability, subharmonic function, Lipschitz constant.
@article{MZM_2009_86_4_a13,
     author = {D. S. Telyakovskii},
     title = {A {Sufficient} {Condition} for the {Harmonicity} of {Functions} of {Two} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {628--640},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a13/}
}
TY  - JOUR
AU  - D. S. Telyakovskii
TI  - A Sufficient Condition for the Harmonicity of Functions of Two Variables
JO  - Matematičeskie zametki
PY  - 2009
SP  - 628
EP  - 640
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a13/
LA  - ru
ID  - MZM_2009_86_4_a13
ER  - 
%0 Journal Article
%A D. S. Telyakovskii
%T A Sufficient Condition for the Harmonicity of Functions of Two Variables
%J Matematičeskie zametki
%D 2009
%P 628-640
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a13/
%G ru
%F MZM_2009_86_4_a13
D. S. Telyakovskii. A Sufficient Condition for the Harmonicity of Functions of Two Variables. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 628-640. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a13/

[1] J. Priwaloff, “Sur les fonctions harmoniques”, Matem. sb., 32:3 (1925), 464–471 | Zbl

[2] G. P. Tolstov, “Ob ogranichennykh funktsiyakh, udovletvoryayuschikh uravneniyu Laplasa”, Matem. sb., 29:3 (1951), 559–564 | MR | Zbl

[3] D. S. Telyakovskii, “Ob odnom obobschenii teoremy Lumana–Menshova”, Matem. zametki, 39:4 (1986), 539–549 | MR | Zbl

[4] I. I. Privalov, Subgarmonicheskie funktsii, Matematika v monografiyakh. Osnovnaya seriya, 2, ONTI, M.–L., 1937

[5] D. S. Telyakovskii, “Ob odnom dostatochnom uslovii garmonichnosti funktsii dvukh peremennykh”, Sovremennye metody teorii kraevykh zadach, Materialy Voronezhskoi vesennei matematicheskoi shkoly “Pontryaginskie chteniya – XVII”, VGU, Voronezh, 2006, 177–178

[6] I. G. Petrovskii, “Metod Perrona resheniya zadachi Dirikhle”, UMN, 1941, no. 8, 107–114 | MR | Zbl

[7] D. Menchoff, “Sur la généralisation des conditions de Cauchy–Riemann”, Fund. Math., 25 (1935), 59–97 | Zbl

[8] S. Saks, Teoriya integrala, IL, M., 1949 | MR | Zbl