Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_4_a12, author = {A. A. Sedaev}, title = {Generalized {Limits} and {Related} {Asymptotic} {Formulas}}, journal = {Matemati\v{c}eskie zametki}, pages = {612--627}, publisher = {mathdoc}, volume = {86}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a12/} }
A. A. Sedaev. Generalized Limits and Related Asymptotic Formulas. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 612-627. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a12/
[1] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[2] A. Carey, J. Phillips, F. Sukochev, “Spectral flow and Dixmier traces”, Adv. Math., 173:1 (2003), 68–113 | MR | Zbl
[3] A. L. Carey, A. Rennie, A. Sedaev, F. Sukochev, “The Dixmier trace and asymptotics of zeta functions”, J. Funct. Anal., 249:2 (2007), 253–283 | MR | Zbl
[4] A. L. Keri, F. A. Sukochev, “Sledy Diksme i nekotorye prilozheniya v nekommutativnoi geometrii”, UMN, 61:6 (2006), 45–110 | MR | Zbl
[5] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl
[6] J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A, 262 (1966), 1107–1108 | MR | Zbl
[7] P. G. Dodds, B. de Pagter, E. M. Semenov, F. A. Sukochev, “Symmetric functionals and singular traces”, Positivity, 2:1 (1998), 47–75 | MR | Zbl
[8] S. Lord, A. Sedaev, F. Sukochev, “Dixmier traces as singular symmetric functionals and applications to measurable operators”, J. Funct. Anal., 224:1 (2005), 72–106 | MR | Zbl
[9] A. A. Sedaev, F. A. Sukochev, S. Lord, “Sledy Konna–Diksme, singulyarnye simmetrichnye funktsionaly i izmerimye po Konnu elementy”, Matem. zametki, 76:6 (2004), 948–953 | MR | Zbl
[10] A. A. Sedaev, “Ob odnoi teoreme tauberova tipa, voznikayuschei v teorii singulyarnykh simmetrichnykh funktsionalov”, Vestn. VGU. Ser. Fiz., matem., 2004, no. 1, 146–148
[11] G. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949 | MR | Zbl