Generalized Limits and Related Asymptotic Formulas
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 612-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the new version of Karamata's theorem, stated in terms of generalized limits, we succeed in weakening the conditions of validity of the Connes asymptotic formulas studied by many authors. Using this approach, we can apply the criterion of “measurability” due to Connes for passing from generalized limits to ordinary limits.
Keywords: generalized limit, Dixmier trace, operator ideal, Cesàro operator, Karamata theorem, Hilbert space, dilation operator.
Mots-clés : Marcinkiewicz space, Lebesgue–Stieltjes integral
@article{MZM_2009_86_4_a12,
     author = {A. A. Sedaev},
     title = {Generalized {Limits} and {Related} {Asymptotic} {Formulas}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {612--627},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a12/}
}
TY  - JOUR
AU  - A. A. Sedaev
TI  - Generalized Limits and Related Asymptotic Formulas
JO  - Matematičeskie zametki
PY  - 2009
SP  - 612
EP  - 627
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a12/
LA  - ru
ID  - MZM_2009_86_4_a12
ER  - 
%0 Journal Article
%A A. A. Sedaev
%T Generalized Limits and Related Asymptotic Formulas
%J Matematičeskie zametki
%D 2009
%P 612-627
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a12/
%G ru
%F MZM_2009_86_4_a12
A. A. Sedaev. Generalized Limits and Related Asymptotic Formulas. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 612-627. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a12/

[1] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[2] A. Carey, J. Phillips, F. Sukochev, “Spectral flow and Dixmier traces”, Adv. Math., 173:1 (2003), 68–113 | MR | Zbl

[3] A. L. Carey, A. Rennie, A. Sedaev, F. Sukochev, “The Dixmier trace and asymptotics of zeta functions”, J. Funct. Anal., 249:2 (2007), 253–283 | MR | Zbl

[4] A. L. Keri, F. A. Sukochev, “Sledy Diksme i nekotorye prilozheniya v nekommutativnoi geometrii”, UMN, 61:6 (2006), 45–110 | MR | Zbl

[5] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[6] J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A, 262 (1966), 1107–1108 | MR | Zbl

[7] P. G. Dodds, B. de Pagter, E. M. Semenov, F. A. Sukochev, “Symmetric functionals and singular traces”, Positivity, 2:1 (1998), 47–75 | MR | Zbl

[8] S. Lord, A. Sedaev, F. Sukochev, “Dixmier traces as singular symmetric functionals and applications to measurable operators”, J. Funct. Anal., 224:1 (2005), 72–106 | MR | Zbl

[9] A. A. Sedaev, F. A. Sukochev, S. Lord, “Sledy Konna–Diksme, singulyarnye simmetrichnye funktsionaly i izmerimye po Konnu elementy”, Matem. zametki, 76:6 (2004), 948–953 | MR | Zbl

[10] A. A. Sedaev, “Ob odnoi teoreme tauberova tipa, voznikayuschei v teorii singulyarnykh simmetrichnykh funktsionalov”, Vestn. VGU. Ser. Fiz., matem., 2004, no. 1, 146–148

[11] G. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949 | MR | Zbl