Generalized Riemann-Type Integrals on the Plane and an Example of Double Haar Series
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 601-611.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that du Bois-Reymond-type theorems do not hold for the double Haar series, for the dyadic cubic Henstock integral, and for regular convergence over rectangles.
Keywords: Riemann-type integral, double Haar series, dyadic cubic Henstock integral, regular convergence, du Bois-Reymond theorem, Fourier series.
@article{MZM_2009_86_4_a11,
     author = {M. G. Plotnikov},
     title = {Generalized {Riemann-Type} {Integrals} on the {Plane} and an {Example} of {Double} {Haar} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {601--611},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a11/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Generalized Riemann-Type Integrals on the Plane and an Example of Double Haar Series
JO  - Matematičeskie zametki
PY  - 2009
SP  - 601
EP  - 611
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a11/
LA  - ru
ID  - MZM_2009_86_4_a11
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Generalized Riemann-Type Integrals on the Plane and an Example of Double Haar Series
%J Matematičeskie zametki
%D 2009
%P 601-611
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a11/
%G ru
%F MZM_2009_86_4_a11
M. G. Plotnikov. Generalized Riemann-Type Integrals on the Plane and an Example of Double Haar Series. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 601-611. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a11/

[1] N. K. Bari, Trigonometricheskie ryady, GIFML, M., 1961 | MR

[2] M. G. Plotnikov, “Nekotorye svoistva mnogomernykh obobschennykh integralov i teoremy tipa Dyu Bua-Reimona dlya dvoinykh ryadov Khaara”, Matem. sb., 198:7 (2007), 63–90 | MR | Zbl

[3] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[4] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391 | MR | Zbl

[5] W. R. Wade, K. Yoneda, “Uniqueness and quasimeasures on the group of integers of a $p$-series field”, Proc. Amer. Math. Soc., 84:2 (1982), 202–206 | MR | Zbl

[6] V. A. Skvortsov, A. A. Talalyan, “Nekotorye voprosy edinstvennosti kratnykh ryadov po sisteme Khaara i trigonometricheskoi sisteme”, Matem. zametki, 46:2 (1989), 104–113 | MR | Zbl

[7] M. G. Plotnikov, “O edinstvennosti vsyudu skhodyaschikhsya kratnykh ryadov Khaara”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 1, 23–28 | MR | Zbl

[8] K. M. Ostaszewski, Henstock Integration in the Plane, Mem. Amer. Math. Soc., 63, 353, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl

[9] V. A. Skvortsov, “O mnozhestvakh edinstvennosti dlya mnogomernykh ryadov Khaara”, Matem. zametki, 14:6 (1973), 789–798 | MR | Zbl

[10] M. G. Plotnikov, “O narushenii edinstvennosti dlya dvumernykh ryadov Khaara”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2003, no. 4, 20–24 | MR | Zbl

[11] A. N. Kolmogorov, A. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Klassicheskii universitetskii uchebnik, Fizmatlit, M., 2004 | MR | Zbl

[12] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primenenie, Nauka, M., 1987 | MR | Zbl