Determination of Integer Solutions of a System of Simultaneous Pell Equations
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 588-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe an algorithm for finding integer solutions of a system of simultaneous Pell equations whose effective estimates can be obtained using the theory of linear forms in the logarithms of algebraic numbers. We use Matveev's estimate for forms in three logarithms. To decrease the resulting estimate, we use an iterative algorithm. At the end of the paper, results of the practical implementation of the proposed algorithm are given.
Keywords: simultaneous Pell equations, linear and quadratic forms, continued fraction, iterative algorithm, quadratic field, algebraic number, quadratic irrationality.
Mots-clés : Diophantine equation
@article{MZM_2009_86_4_a10,
     author = {A. Yu. Nesterenko},
     title = {Determination of {Integer} {Solutions} of a {System} of {Simultaneous} {Pell} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {588--600},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a10/}
}
TY  - JOUR
AU  - A. Yu. Nesterenko
TI  - Determination of Integer Solutions of a System of Simultaneous Pell Equations
JO  - Matematičeskie zametki
PY  - 2009
SP  - 588
EP  - 600
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a10/
LA  - ru
ID  - MZM_2009_86_4_a10
ER  - 
%0 Journal Article
%A A. Yu. Nesterenko
%T Determination of Integer Solutions of a System of Simultaneous Pell Equations
%J Matematičeskie zametki
%D 2009
%P 588-600
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a10/
%G ru
%F MZM_2009_86_4_a10
A. Yu. Nesterenko. Determination of Integer Solutions of a System of Simultaneous Pell Equations. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 588-600. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a10/

[1] I. Kh. Sabitov, “Issledovanie zhestkosti i neizgibaemosti analiticheskikh poverkhnostei vrascheniya s uploscheniem v polyuse”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 5, 29–36 | MR | Zbl

[2] A. Baker, H. Davenport, “The equations $3x^2-2=y^2$ and $8x^2-7=z^2$”, Quart. J. Math. Oxford Ser. (2), 20 (1969), 129–137 | MR | Zbl

[3] C. M. Grinstead, “On a method of solving a class of Diophantine equations”, Math. Comp., 32:143 (1978), 936–940 | MR | Zbl

[4] R. G. E. Pinch, “Simultaneous Pellian equations”, Math. Proc. Cambridge Philos. Soc., 103:1 (1988), 35–46 | MR | Zbl

[5] W. S. Anglin, “Simultaneous Pell equations”, Math. Comp., 65:213 (1996), 355–359 | MR | Zbl

[6] B. A. Venkov, Elementarnaya teoriya chisel, Matematika v monografiyakh. Ser. obzorov, 4, ONTI NKTP SSSR, M., 1937 | MR | Zbl

[7] G. Devenport, Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, M., 1965 | MR | Zbl

[8] A. Baker, “Linear forms in the logarithms of algebraic numbers. IV”, Mathematica, 15 (1968), 204–216 | MR | Zbl

[9] M. A. Bennet, On the Number of Solutions of Simultaneous Pell Equations, Preprint, Univ. of British Columbia, Vancouver, BC, 1991

[10] M. Waldschmidt, “A lower bound for linear forms in logarithms”, Acta Arith., 37 (1980), 257–283 | MR | Zbl

[11] E. M. Matveev, “Yavnaya nizhnyaya otsenka odnorodnoi ratsionalnoi lineinoi formy ot logarifmov algebraicheskikh chisel. II”, Izv. RAN. Ser. matem., 64:6 (2000), 125–180 | MR | Zbl

[12] A. Yu. Nesterenko, “O nakhozhdenii tselochislennykh reshenii sistemy svyazannykh uravnenii Pellya”, Tezisy dokladov IV Mezhdunarodnoi konferentsii “Sovremennye problemy teorii chisel i ee prilozheniya”, TGPU, Tula, 2001, 88