Monomorphisms of Free Burnside Groups
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 483-490.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that, for any odd $n\ge1039$, there are words $u(x,y)$ and $v(x,y)$ over the group alphabet $\{x,y\}$ such that, if $a$ and $b$ are any two noncommuting elements of the free Burnside group $B(m,n)$, then, for some $k$, the elements $u(a^k,b)$ and $v(a^k,b)$ freely generate a free Burnside subgroup of the group $B(m,n)$. In particular, the facts proved in the paper imply the uniform nonamenability of the group $B(m,n)$ for odd $n$, $n\ge1039$.
Keywords: absolutely free group, free Burnside group, uniformly nonamenable group, residually finite group, $2$-generated subgroup, Tarski monster, Hopfian group.
@article{MZM_2009_86_4_a0,
     author = {V. S. Atabekyan},
     title = {Monomorphisms of {Free} {Burnside} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--490},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Monomorphisms of Free Burnside Groups
JO  - Matematičeskie zametki
PY  - 2009
SP  - 483
EP  - 490
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a0/
LA  - ru
ID  - MZM_2009_86_4_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Monomorphisms of Free Burnside Groups
%J Matematičeskie zametki
%D 2009
%P 483-490
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a0/
%G ru
%F MZM_2009_86_4_a0
V. S. Atabekyan. Monomorphisms of Free Burnside Groups. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 483-490. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a0/

[1] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[2] P. S. Novikov, S. I. Adyan, “O beskonechnykh periodicheskikh gruppakh. I”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 | MR | Zbl

[3] S. I. Adyan, “Issledovaniya po probleme Bernsaida i svyazannym s nei voprosam”, Algebra, matematicheskaya logika, teoriya chisel, topologiya, Sbornik obzornykh statei. 1, Tr. MIAN, 168, Nauka, M., 1984, 171–196 | MR | Zbl

[4] S. I. Adyan, “Sluchainye bluzhdaniya na svobodnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 46:6 (1982), 1139–1149 | MR | Zbl

[5] G. N. Arzhantseva, J. Burillo, M. Lustig, L. Reeves, H. Short, E. Ventura, “Uniform non-amenability”, Adv. Math., 197:2 (2005), 499–522 | MR | Zbl

[6] J. von Neumann, “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116 | Zbl

[7] S. V. Ivanov, A. Yu. Ol'shanskii, “Some applications of graded diagrams in combinatorial group theory”, Groups – St. Andrews 1989, Vol. 2, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991, 258–308 | MR | Zbl

[8] D. V. Osin, “Uniform non-amenability of free Burnside groups”, Arch. Math. (Basel), 88:5 (2007), 403–412 | MR | Zbl

[9] V. S. Atabekyan, “Ravnomernaya neamenabelnost podgrupp svobodnykh bernsaidovykh grupp nechetnogo perioda”, Matem. zametki, 85:4 (2009), 516–523

[10] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR | Zbl

[11] A. Yu. Ol'shanskii, “Self-normalization of free subgroups in the free Burnside groups”, Groups, Rings, Lie and Hopf Algebras (St. John's, NF, 2001), Math. Appl., 555, Kluwer Acad. Publ., Dordrecht, 2003, 179–187 | MR | Zbl

[12] V. Atabekyan, “Normal subgroups in free Burnside groups of odd period”, Armen. J. Math., 1:2 (2008), 25–29 | MR

[13] M. F. Newman, “Problems”, Burnside groups (Proc. Workshop, Univ. Bielefeld, Bielefeld, 1977), Lecture Notes in Math., 806, Springer-Verlag, Berlin, 1980, 249–254 | DOI | MR | Zbl

[14] S. I. Adyan, “Periodicheskoe proizvedenie grupp”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Sbornik statei, posvyaschennyi akademiku Ivanu Matveevichu Vinogradovu k ego 85-letiyu, Tr. MIAN, 142, Nauka, M., 1976, 3–21 | MR | Zbl

[15] V. L. Shirvanyan, “Vlozhenie gruppy $\mathbf B(\infty,n)$ v gruppu $\mathbf B(2,n)$”, Izv. AN SSSR. Ser. matem., 40:1 (1976), 190–208 | MR | Zbl

[16] V. S. Atabekyan, Ob approksimatsii i podgruppakh svobodnykh periodicheskikh grupp, dep. v VINITI 5380-V86

[17] V. S. Atabekyan, “O prostykh i svobodnykh periodicheskikh gruppakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1987, no. 6, 76–78 | MR | Zbl

[18] A. Yu. Ol'shanskii, M. V. Sapir, “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 43–169 | MR | Zbl

[19] D. Sonkin, “CEP-subgroups of free Burnside groups of large odd exponents”, Comm. Algebra, 31:10 (2003), 4687–4695 | MR | Zbl

[20] S. V. Ivanov, “On subgroups of free Burnside groups of large odd exponent”, Illinois J. Math., 47:1–2 (2003), 299–304 | MR | Zbl

[21] V. S. Atabekyan, “O podgruppakh svobodnykh bernsaidovykh grupp nechetnogo perioda $n\ge 1003$”, Izv. RAN. Ser. matem., 73:5 (2009), 3–36

[22] S. I. Adyan, I. G. Lysënok, “O gruppakh, vse sobstvennye podgruppy kotorykh konechnye tsiklicheskie”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 933–990 | MR | Zbl

[23] P. M. Neumann, J. Wiegold, “Schreier varieties of groups”, Math. Z., 85 (1964), 392–400 | MR | Zbl