A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 380-388
Voir la notice de l'article provenant de la source Math-Net.Ru
The following question is considered: Which quasi-Sasakian (cosymplectic, Sasakian, or proper quasi-Sasakian) structures admit nontrivial concircular transformations of their metrics (i.e., determine Fialkow spaces), and under what conditions. It is proved that any cosymplectic manifold is a Fialkow space. Necessary and sufficient conditions for a Sasakian or a quasi-Sasakian manifold to be a Fialkow space are obtained. A fairly large class of Sasakian manifolds which are not Fialkow spaces is described.
Mots-clés :
quasi-Sasakian structure
Keywords: concircular transformation of a metric, Fialkow space, cosymplectic manifold, Sasakian manifold, Kenmotsu manifold.
Keywords: concircular transformation of a metric, Fialkow space, cosymplectic manifold, Sasakian manifold, Kenmotsu manifold.
@article{MZM_2009_86_3_a6,
author = {V. F. Kirichenko and E. A. Pol'kina},
title = {A {Criterion} for the {Concircular} {Mobility} of {Quasi-Sasakian} {Manifolds}},
journal = {Matemati\v{c}eskie zametki},
pages = {380--388},
publisher = {mathdoc},
volume = {86},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/}
}
V. F. Kirichenko; E. A. Pol'kina. A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 380-388. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/