A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 380-388

Voir la notice de l'article provenant de la source Math-Net.Ru

The following question is considered: Which quasi-Sasakian (cosymplectic, Sasakian, or proper quasi-Sasakian) structures admit nontrivial concircular transformations of their metrics (i.e., determine Fialkow spaces), and under what conditions. It is proved that any cosymplectic manifold is a Fialkow space. Necessary and sufficient conditions for a Sasakian or a quasi-Sasakian manifold to be a Fialkow space are obtained. A fairly large class of Sasakian manifolds which are not Fialkow spaces is described.
Mots-clés : quasi-Sasakian structure
Keywords: concircular transformation of a metric, Fialkow space, cosymplectic manifold, Sasakian manifold, Kenmotsu manifold.
@article{MZM_2009_86_3_a6,
     author = {V. F. Kirichenko and E. A. Pol'kina},
     title = {A {Criterion} for the {Concircular} {Mobility} of {Quasi-Sasakian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {380--388},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - E. A. Pol'kina
TI  - A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds
JO  - Matematičeskie zametki
PY  - 2009
SP  - 380
EP  - 388
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/
LA  - ru
ID  - MZM_2009_86_3_a6
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A E. A. Pol'kina
%T A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds
%J Matematičeskie zametki
%D 2009
%P 380-388
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/
%G ru
%F MZM_2009_86_3_a6
V. F. Kirichenko; E. A. Pol'kina. A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 380-388. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/