A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 380-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following question is considered: Which quasi-Sasakian (cosymplectic, Sasakian, or proper quasi-Sasakian) structures admit nontrivial concircular transformations of their metrics (i.e., determine Fialkow spaces), and under what conditions. It is proved that any cosymplectic manifold is a Fialkow space. Necessary and sufficient conditions for a Sasakian or a quasi-Sasakian manifold to be a Fialkow space are obtained. A fairly large class of Sasakian manifolds which are not Fialkow spaces is described.
Mots-clés : quasi-Sasakian structure
Keywords: concircular transformation of a metric, Fialkow space, cosymplectic manifold, Sasakian manifold, Kenmotsu manifold.
@article{MZM_2009_86_3_a6,
     author = {V. F. Kirichenko and E. A. Pol'kina},
     title = {A {Criterion} for the {Concircular} {Mobility} of {Quasi-Sasakian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {380--388},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - E. A. Pol'kina
TI  - A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds
JO  - Matematičeskie zametki
PY  - 2009
SP  - 380
EP  - 388
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/
LA  - ru
ID  - MZM_2009_86_3_a6
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A E. A. Pol'kina
%T A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds
%J Matematičeskie zametki
%D 2009
%P 380-388
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/
%G ru
%F MZM_2009_86_3_a6
V. F. Kirichenko; E. A. Pol'kina. A Criterion for the Concircular Mobility of Quasi-Sasakian Manifolds. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 380-388. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a6/

[1] A. Fialkow, “Conformal geodesics”, Trans. Amer. Math. Soc., 45:3 (1939), 443–473 | DOI | MR | Zbl

[2] N. S. Sinyukov, Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR | Zbl

[3] S. G. Leiko, “$P$-geodezicheskie preobrazovaniya i ikh gruppy v kasatelnykh rassloeniyakh, indutsirovannye kontsirkulyarnymi preobrazovaniyami bazisnogo mnogoobraziya”, Izv. vuzov. Matem., 1998, no. 6, 35–45 | MR

[4] V. F. Kirichenko, “O geometrii mnogoobrazii Kenmotsu”, Dokl. RAN, 380:5 (2001), 585–587 | MR | Zbl

[5] V. F. Kirichenko, A. R. Rustanov, “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl

[6] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[7] D. E. Blair, “The theory of quasi-Sasakian structures”, J. Differential Geometry, 1 (1967), 331–345 | MR | Zbl

[8] K. Yano, “Concircular geometry. I. Concircular transformations”, Proc. Imp. Acad. Tokyo, 16:6 (1940), 195–200 | DOI | MR | Zbl

[9] V. F. Kirichenko, N. S. Baklashova, “Geometriya kontaktnoi formy Li i kontaktnyi analog teoremy Ikuty”, Matem. zametki, 82:3 (2007), 347–360 | MR | Zbl

[10] V. F. Kirichenko, L. I. Vlasova, “Kontsirkulyarnaya geometriya priblizhenno kelerovykh mnogoobrazii”, Matem. sb., 193:5 (2002), 53–76 | MR | Zbl

[11] V. F. Kirichenko, “Aksioma $\Phi$-golomorfnykh ploskostei v kontaktnoi metricheskoi geometrii”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 711–734 | MR | Zbl