Torsion in the Abelianization of the Torelli Group $\mathscr T$ as an $\mathrm{Sp}(\mathbb Z_2)$-Module
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 478-480
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Torelli group, Abelianization, torsion subgroup, symplectic form
Mots-clés : composition series.
Mots-clés : composition series.
@article{MZM_2009_86_3_a18,
author = {O. V. Schwarzman},
title = {Torsion in the {Abelianization} of the {Torelli} {Group~}$\mathscr T$ as an $\mathrm{Sp}(\mathbb Z_2)${-Module}},
journal = {Matemati\v{c}eskie zametki},
pages = {478--480},
year = {2009},
volume = {86},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a18/}
}
TY - JOUR
AU - O. V. Schwarzman
TI - Torsion in the Abelianization of the Torelli Group $\mathscr T$ as an $\mathrm{Sp}(\mathbb Z_2)$-Module
JO - Matematičeskie zametki
PY - 2009
SP - 478
EP - 480
VL - 86
IS - 3
UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a18/
LA - ru
ID - MZM_2009_86_3_a18
ER -
O. V. Schwarzman. Torsion in the Abelianization of the Torelli Group $\mathscr T$ as an $\mathrm{Sp}(\mathbb Z_2)$-Module. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 478-480. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a18/
[1] Kh. Tsishang, E. Fogt, Kh.-D. Koldevai, Poverkhnosti i razryvnye gruppy, Nauka, M., 1988 | MR | Zbl
[2] D. Johnson, Topology, 24:2 (1985), 127–144 | DOI | MR | Zbl
[3] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR | Zbl
[4] E. Artin, Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl
[5] N. Burbaki, Algebra. Moduli, koltsa, formy, Elementy matematiki, Nauka, M., 1966 | MR | Zbl