Semiclassical Approximation for a Nonself-Adjoint Sturm--Liouville Problem with a Parabolic Potential
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 469-473

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Sturm–Liouville problem
Keywords: Orr–Sommerfeld operator, spectral graph, velocity profile, small parameter, analytic function, Stokes lines, entire function.
@article{MZM_2009_86_3_a16,
     author = {V. I. Pokotilo and A. A. Shkalikov},
     title = {Semiclassical {Approximation} for a {Nonself-Adjoint} {Sturm--Liouville} {Problem} with a {Parabolic} {Potential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {469--473},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a16/}
}
TY  - JOUR
AU  - V. I. Pokotilo
AU  - A. A. Shkalikov
TI  - Semiclassical Approximation for a Nonself-Adjoint Sturm--Liouville Problem with a Parabolic Potential
JO  - Matematičeskie zametki
PY  - 2009
SP  - 469
EP  - 473
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a16/
LA  - ru
ID  - MZM_2009_86_3_a16
ER  - 
%0 Journal Article
%A V. I. Pokotilo
%A A. A. Shkalikov
%T Semiclassical Approximation for a Nonself-Adjoint Sturm--Liouville Problem with a Parabolic Potential
%J Matematičeskie zametki
%D 2009
%P 469-473
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a16/
%G ru
%F MZM_2009_86_3_a16
V. I. Pokotilo; A. A. Shkalikov. Semiclassical Approximation for a Nonself-Adjoint Sturm--Liouville Problem with a Parabolic Potential. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 469-473. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a16/