Semiclassical Approximation for a Nonself-Adjoint Sturm–Liouville Problem with a Parabolic Potential
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 469-473
Cet article a éte moissonné depuis la source Math-Net.Ru
Mots-clés :
Sturm–Liouville problem
Keywords: Orr–Sommerfeld operator, spectral graph, velocity profile, small parameter, analytic function, Stokes lines, entire function.
Keywords: Orr–Sommerfeld operator, spectral graph, velocity profile, small parameter, analytic function, Stokes lines, entire function.
@article{MZM_2009_86_3_a16,
author = {V. I. Pokotilo and A. A. Shkalikov},
title = {Semiclassical {Approximation} for a {Nonself-Adjoint} {Sturm{\textendash}Liouville} {Problem} with a {Parabolic} {Potential}},
journal = {Matemati\v{c}eskie zametki},
pages = {469--473},
year = {2009},
volume = {86},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a16/}
}
TY - JOUR AU - V. I. Pokotilo AU - A. A. Shkalikov TI - Semiclassical Approximation for a Nonself-Adjoint Sturm–Liouville Problem with a Parabolic Potential JO - Matematičeskie zametki PY - 2009 SP - 469 EP - 473 VL - 86 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a16/ LA - ru ID - MZM_2009_86_3_a16 ER -
V. I. Pokotilo; A. A. Shkalikov. Semiclassical Approximation for a Nonself-Adjoint Sturm–Liouville Problem with a Parabolic Potential. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 469-473. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a16/
[1] A. A. Shkalikov, Matem. zametki, 62:6 (1997), 950–953 | MR | Zbl
[2] A. A. Shkalikov, Trudy mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam — satellita Mezhdunarodnogo kongressa matematikov ICM-2002 (Moskva, MAI, 11–17 avgusta, 2002). Chast 3, SMFN, 3, MAI, M., 2003, 89–112 | MR | Zbl
[3] S. N. Tumanov, A. A. Shkalikov, Izv. RAN. Ser. matem., 66:4 (2002), 177–204 | MR | Zbl
[4] S. N. Tumanov, A. A. Shkalikov, O modelnoi zadache dlya uravneniya Orra–Zommerfelda s kvadratichnym profilem, arXiv: math-ph/0212074v1
[5] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl