On the Equality of Kolmogorov and Relative Widths of Classes of Differentiable Functions
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 456-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sharper estimates of the remainders in the expression for the least value of the multiplier $M$ for which the Kolmogorov widths $d_n(W_C^r,C)$ and the relative widths $K_n(W_C^r,MW_C^j,C)$ of the class $W_C^r$ with respect to the class $MW_C^j$, $j$, where $r-j$ is odd, are equal.
Keywords: Kolmogorov width, relative width of a class, differentiable function, $2\pi$-periodic function, Banach space
Mots-clés : Favard constant.
@article{MZM_2009_86_3_a14,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {On the {Equality} of {Kolmogorov} and {Relative} {Widths} of {Classes} of {Differentiable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {456--465},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a14/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - On the Equality of Kolmogorov and Relative Widths of Classes of Differentiable Functions
JO  - Matematičeskie zametki
PY  - 2009
SP  - 456
EP  - 465
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a14/
LA  - ru
ID  - MZM_2009_86_3_a14
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T On the Equality of Kolmogorov and Relative Widths of Classes of Differentiable Functions
%J Matematičeskie zametki
%D 2009
%P 456-465
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a14/
%G ru
%F MZM_2009_86_3_a14
Yu. N. Subbotin; S. A. Telyakovskii. On the Equality of Kolmogorov and Relative Widths of Classes of Differentiable Functions. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 456-465. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a14/

[1] Yu. N. Subbotin, S. A. Telyakovskii, “Tochnye znacheniya otnositelnykh poperechnikov klassov differentsiruemykh funktsii”, Matem. zametki, 65:6 (1999), 871–879 | MR | Zbl

[2] Yu. N. Subbotin, S. A. Telyakovskii, “Ob otnositelnykh poperechnikakh klassov differentsiruemykh funktsii”, Issledovaniya po teorii funktsii i differentsialnym uravneniyam, Sbornik statei. K 100-letiyu so dnya rozhdeniya akademika Sergeya Mikhailovicha Nikolskogo, Tr. MIAN, 248, Nauka, M., 2005, 250–261 | MR | Zbl

[3] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[4] S. A. Telyakovskii, “Otsenka normy funktsii cherez ee koeffitsienty Fure, udobnaya v zadachakh teorii approksimatsii”, Priblizhenie periodicheskikh funktsii, Sbornik statei, Tr. MIAN, 109, Nauka, M., 1971, 65–97 | MR | Zbl