On the Equality of Kolmogorov and Relative Widths of Classes of Differentiable Functions
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 456-465
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain sharper estimates of the remainders in the expression for the least value of the multiplier $M$ for which the Kolmogorov widths $d_n(W_C^r,C)$ and the relative widths $K_n(W_C^r,MW_C^j,C)$ of the class $W_C^r$ with respect to the class $MW_C^j$, $j$, where $r-j$ is odd, are equal.
Keywords:
Kolmogorov width, relative width of a class, differentiable function, $2\pi$-periodic function, Banach space
Mots-clés : Favard constant.
Mots-clés : Favard constant.
@article{MZM_2009_86_3_a14,
author = {Yu. N. Subbotin and S. A. Telyakovskii},
title = {On the {Equality} of {Kolmogorov} and {Relative} {Widths} of {Classes} of {Differentiable} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {456--465},
publisher = {mathdoc},
volume = {86},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a14/}
}
TY - JOUR AU - Yu. N. Subbotin AU - S. A. Telyakovskii TI - On the Equality of Kolmogorov and Relative Widths of Classes of Differentiable Functions JO - Matematičeskie zametki PY - 2009 SP - 456 EP - 465 VL - 86 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a14/ LA - ru ID - MZM_2009_86_3_a14 ER -
Yu. N. Subbotin; S. A. Telyakovskii. On the Equality of Kolmogorov and Relative Widths of Classes of Differentiable Functions. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 456-465. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a14/