Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 429-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\omega(\varphi,\,\cdot\,)$ is the dyadic modulus of continuity of a compactly supported function $\varphi$ in $L^2(\mathbb R_+)$ satisfying a scaling equation with $2^n$ coefficients. Denote by $\alpha_\varphi$ the supremum for values of $\alpha>0$ such that the inequality $\omega(\varphi,2^{-j})\le C2^{-\alpha j}$ holds for all $j\in\mathbb N$. For the cases $n=3$ and $n=4$, we study the scaling functions $\varphi$ generating multiresolution analyses in $L^2(\mathbb R_+)$ and the exact values of $\alpha_\varphi$ are calculated for these functions. It is noted that the smoothness of the dyadic orthogonal wavelet in $L^2(\mathbb R_+)$ corresponding to the scaling function $\varphi$ coincides with $\alpha_\varphi$.
Keywords: Daubechies wavelet, multiresolution analysis, the space $L^2(\mathbb R_+)$, Walsh series, binary entire function, Haar function, modulus of continuity, dyadic scaling function.
@article{MZM_2009_86_3_a12,
     author = {E. A. Rodionov and Yu. A. Farkov},
     title = {Estimates of the {Smoothness} of {Dyadic} {Orthogonal} {Wavelets} of {Daubechies} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {429--444},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a12/}
}
TY  - JOUR
AU  - E. A. Rodionov
AU  - Yu. A. Farkov
TI  - Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type
JO  - Matematičeskie zametki
PY  - 2009
SP  - 429
EP  - 444
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a12/
LA  - ru
ID  - MZM_2009_86_3_a12
ER  - 
%0 Journal Article
%A E. A. Rodionov
%A Yu. A. Farkov
%T Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type
%J Matematičeskie zametki
%D 2009
%P 429-444
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a12/
%G ru
%F MZM_2009_86_3_a12
E. A. Rodionov; Yu. A. Farkov. Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 429-444. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a12/

[1] I. Dobeshi, Desyat lektsii po veivletam, RKhD, Izhevsk, 2001 | MR | Zbl

[2] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005

[3] I. Daubechies, J. C. Lagarias, “Two-scale difference equations II. Local regularity, infinite products of matrices and fractals”, SIAM J. Math. Anal., 23:4 (1992), 1031–1079 | DOI | MR | Zbl

[4] D. Colella, C. Heil, “Characterization of scaling functions. Continuous solutions”, SIAM J. Matrix Anal. Appl., 15:2 (1994), 496–518 | DOI | MR | Zbl

[5] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[6] F. Schipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[7] B. I. Golubov, Elementy dvoichnogo analiza, Izd-vo LKI, M., 2007 | MR | Zbl

[8] V. Yu. Protasov, Yu. A. Farkov, “Diadicheskie veivlety i masshtabiruyuschie funktsii na polupryamoi”, Matem. sb., 197:10 (2006), 129–160 | MR | Zbl

[9] W. C. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Internat. J. Math. Math. Sci., 21:2 (1998), 307–314 | DOI | MR | Zbl

[10] Yu. A. Farkov, “Ortogonalnye veivlety na pryamykh proizvedeniyakh tsiklicheskikh grupp”, Matem. zametki, 82:6 (2007), 934–952 | MR | Zbl

[11] Yu. A. Farkov, “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | MR | Zbl

[12] V. Yu. Protasov, “Fraktalnye krivye i vspleski”, Izv. RAN. Ser. matem., 70:5 (2006), 123–162 | MR | Zbl

[13] V. Yu. Protasov, “Obobschennyi sovmestnyi spektralnyi radius. Geometricheskii podkhod”, Izv. RAN. Ser. matem., 61:5 (1997), 99–136 | MR | Zbl

[14] E. A. Rodionov, Yu. A. Farkov, “Ob otsenkakh gladkosti diadicheskikh veivletov na polupryamoi”, Tezisy dokladov V Mezhdunarodnogo simpoziuma “Ryady Fure i ikh prilozheniya” (27 maya–3 iyunya, 2008), Izd-vo TsVVR, Rostov-na-Donu, 2008, 48–49