Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 429-444
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $\omega(\varphi,\,\cdot\,)$ is the dyadic modulus of continuity of a compactly supported function $\varphi$ in $L^2(\mathbb R_+)$ satisfying a scaling equation with $2^n$ coefficients. Denote by $\alpha_\varphi$ the supremum for values of $\alpha>0$ such that the inequality $\omega(\varphi,2^{-j})\le C2^{-\alpha j}$ holds for all $j\in\mathbb N$. For the cases $n=3$ and $n=4$, we study the scaling functions $\varphi$ generating multiresolution analyses in $L^2(\mathbb R_+)$ and the exact values of $\alpha_\varphi$ are calculated for these functions. It is noted that the smoothness of the dyadic orthogonal wavelet in $L^2(\mathbb R_+)$ corresponding to the scaling function $\varphi$ coincides with $\alpha_\varphi$.
Keywords:
Daubechies wavelet, multiresolution analysis, the space $L^2(\mathbb R_+)$, Walsh series, binary entire function, Haar function, modulus of continuity, dyadic scaling function.
@article{MZM_2009_86_3_a12,
author = {E. A. Rodionov and Yu. A. Farkov},
title = {Estimates of the {Smoothness} of {Dyadic} {Orthogonal} {Wavelets} of {Daubechies} {Type}},
journal = {Matemati\v{c}eskie zametki},
pages = {429--444},
publisher = {mathdoc},
volume = {86},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a12/}
}
TY - JOUR AU - E. A. Rodionov AU - Yu. A. Farkov TI - Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type JO - Matematičeskie zametki PY - 2009 SP - 429 EP - 444 VL - 86 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a12/ LA - ru ID - MZM_2009_86_3_a12 ER -
E. A. Rodionov; Yu. A. Farkov. Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 429-444. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a12/